(1)解:連接OB,如圖1,
∵AB∥x軸,
∴AB⊥y軸
∴BD=
AB=4,
∴OD=
=
=3,
∴B點(diǎn)坐標(biāo)為(4,3);
(2)證明:如圖2,連接AC、BC,作CG⊥AP于點(diǎn)G.
∵AC=BC(等腰三角形“三合一”的性質(zhì)),
∴∠CAB=∠CBA(等邊對(duì)等角).
又∵∠CPD+∠CPB=180°,∠CPB+∠CAB=180°(圓內(nèi)接四邊形的對(duì)角互補(bǔ)),∠ABC=∠APC(同弧所對(duì)的圓周角相等),
∴∠CPD=∠CAB=∠CBA=∠APC(等量代換),即CP為∠APD的角平分線.
而CG⊥AP,CD⊥BP,
∴GP=DP(角平分線上的點(diǎn)到角的兩邊的距離相等).
在Rt△CGP和Rt△CDP中,
∵
,
∴Rt△CGP≌Rt△CDP(HL),
∴CD=CG(全等三角形的對(duì)應(yīng)邊相等).
在Rt△BCD和Rt△ACG中,
∵
,
∴Rt△BCD≌Rt△ACG(HL),
∴AG=BD(全等三角形的對(duì)應(yīng)邊相等),
∴PA-PB=AG+PG-PB=BD+PD-PB=2PD(等量代換),
∴
=2;
(3)解:當(dāng)M、N兩點(diǎn)運(yùn)動(dòng)時(shí),∠BOE+∠OHM是定值.理由如下:
如圖3,過(guò)點(diǎn)B作BP⊥EF于點(diǎn)P,并延長(zhǎng)BP交⊙O于點(diǎn)Q,連接OQ,交BM于點(diǎn)T,設(shè)⊙O與x正半軸交于點(diǎn)I.則
=
,
∴∠BOH=∠QOH,
∵BE=BF,BQ⊥EF,
∴BQ平分∠NBM,
∴
=
,
∴OQ⊥MN,
∴∠OHM+∠QOH=90°,
∴∠BOE+∠OHM=90°,即∠BOE+∠OHM是定值.
分析:(1)連接OH,根據(jù)勾股定理求得OC=3,從而得出點(diǎn)H的坐標(biāo);
(2)連接AC、BC,作CG⊥AP于點(diǎn)G.由鄰補(bǔ)角的定義、圓內(nèi)接四邊形的對(duì)角互補(bǔ)、圓周角定理以及等量代換,得∠CPD=∠CAB=∠CBA=∠APC(等量代換),即CP為∠APD的角平分線.然后通過(guò)全等三角形Rt△CGP≌Rt△CDP(HL)的對(duì)應(yīng)邊相等、全等三角形Rt△BCD≌Rt△ACG(HL)的對(duì)應(yīng)邊相等證得
的值;
(3)過(guò)點(diǎn)B作BP⊥EF于點(diǎn)P,并延長(zhǎng)BP交⊙O于點(diǎn)Q,連接OQ,交BM于點(diǎn)T,設(shè)⊙O與x正半軸交于點(diǎn)I.則
=
,則∠BOH=∠QOH,由△DEF是等腰三角形,得
=
,則∠OHM+∠QOH=90°,從而得出∠BOE+∠OHM=90°,即∠BOE+∠OHM是定值.
點(diǎn)評(píng):本題考查了圓周角定理及其推論:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,一條弧所對(duì)的圓周角是它所對(duì)的圓心角的一半;直徑所對(duì)的圓周角為直角.也考查了垂徑定理以及角平分線的定義.