如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC.過點C作CE⊥DB,垂足為E,直線AB與CE相交于F點.

(1)求證:CF為⊙O的切線;

(2)若⊙O的半徑為cm,弦BD的長為3cm,求CF的長.


【考點】切線的判定.

【專題】證明題.

【分析】(1)連結(jié)OC,如圖,由于∠A=∠OCA,則根據(jù)三角形外角性質(zhì)得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根據(jù)平行線的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根據(jù)切線的判定定理得CF為⊙O的切線;

(2)解:作OH⊥BD于H,如圖,根據(jù)垂徑定理得到BH=DH=BD=,在Rt△OBH中可利用勾股定理計算出OH=2,易得四邊形OHEC為矩形,則CE=OH=2,HE=OC=,BE=1,然后證明△FBE∽△FOC,利用相似比可計算出CF.

【解答】(1)證明:連結(jié)OC,如圖,

∵OA=OC,

∴∠A=∠OCA,

∴∠BOC=∠A+∠OCA=2∠A,

∵∠ABD=2∠BAC,

∴∠ABD=∠BOC,

∴OC∥BD,

∵CE⊥BD,

∴OC⊥CE,

∴CF為⊙O的切線;

(2)解:作OH⊥BD于H,如圖,

則BH=DH=BD=,

在Rt△OBH中,∵OB=,BH=,

∴OH==2,

易得四邊形OHEC為矩形,

∴CE=OH=2,HE=OC=,

∴BE=NE﹣BH=1,

∵BE∥OC,

∴△FBE∽△FOC,

=,即=

∴CF=

【點評】本題考查了切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.也考查了相似三角形的判定與性質(zhì).


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:


在陽光體育活動時間,小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當時只有一副空球桌,他們只能選兩人打第一場.

(1)如果確定小亮打第一場,再從其余三人中隨機選取一人打第一場,求恰好選中大剛的概率;

(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


不等式組的解集在數(shù)軸上表示正確的是( 。

A.    B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


大明因急事在運行中的自動扶梯上行走去二樓(如圖1),圖2中線段OA、OB分別表示大明在運行中的自動扶梯上行走去二樓和靜止站在運行中的自動扶梯上去二樓時,距自動扶梯起點的距離與時間之間的關(guān)系.下面四個圖中,虛線OC能大致表示大明在停止運行(即靜止)的自動扶梯上行走去二樓時,距自動扶梯起點的距離與時間關(guān)系的是( 。

A.       B.      

C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


直角坐標系中,點P(1,4)在( 。

A.第一象限 B.第二象限  C.第三象限 D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


房山某中學(xué)改革學(xué)生的學(xué)習模式,變“老師要學(xué)生學(xué)習”為“學(xué)生自主學(xué)習”,培養(yǎng)了學(xué)生自主學(xué)習的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習方式”隨機調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個統(tǒng)計圖.請根據(jù)下面兩個不完整的統(tǒng)計圖回答以下問題:

(1)這次抽樣調(diào)查中,共調(diào)查了 500 名學(xué)生;

(2)補全兩幅統(tǒng)計圖;

(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


二次函數(shù)y=ax2﹣2ax+3的圖象與x軸有兩個交點,其中一個交點坐標為(﹣1,0),則一元二次方程ax2﹣2ax+3=0的解為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知∠1+∠2=180°,∠B=∠3,你能判斷∠C與∠AED的大小關(guān)系嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時,平均每株盈利4元;若每盆增加1株,平均每株盈利減少0.5元,要使每盆的盈利達到15元,每盆應(yīng)多植多少株?設(shè)每盆多植x株,則可以列出的方程是(  )

A.(3+x)(4﹣0.5x)=15       B.(x+3)(4+0.5x)=15  C.(x+4)(3﹣0.5x)=15       D.(x+1)(4﹣0.5x)=15

查看答案和解析>>

同步練習冊答案