求證:四個角都相等的四邊形是矩形.

答案:略
解析:

先證它是平行四邊形(兩組對邊分別平行)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

29、閱讀探究題:數(shù)學(xué)課上,張老師向大家介紹了等腰三角形的基本知識:有兩條邊相等的三角形叫等腰三角形,如圖1所示:在△ABC中,若AB=AC,則△ABC為等腰三角形且有∠B=∠C.此時(shí),張老師出示了問題:如圖2,四邊形ABCD是正方形(正方形的四邊相等,四個角都是直角),點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交∠DCG的平分線CF于點(diǎn)F,求證:AE=EF.經(jīng)過思考,小明展示了一種正確的解題思路:在線段AB上取AB的中點(diǎn)M,連接ME,則AM=EC,在此基礎(chǔ)上,請聰明的同學(xué)們作進(jìn)一步的研究:
(1)求出角∠AME的度數(shù);
(2)你能在小明的思路下證明結(jié)論嗎?
(3)小穎提出:如圖3,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們在小學(xué)學(xué)過:正方形的四條邊都相等,四個角都是直角,并且對邊互相平行.將正方形ABCD的四個頂點(diǎn)分別放在四條平行線l1、l2、l3、l4上,這四條直線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0),如圖.
(1)求證:h1=h3;
(2)設(shè)正方形ABCD的面積為S,小明寫出了等式:S=(h3+h22+h12,請你判斷是否正確,并說明理由;
(3)若
32
h1+h2=1,當(dāng)h1變化時(shí),正方形ABCD的面積S隨h1的變化而變化.試求出S與h1之間的函數(shù)關(guān)系式,并寫出自變量h1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,把長方形ABCD沿AC折疊,AD落在AD′處,AD′交BC于點(diǎn)E,已知AB=2cm,BC=4cm.(長方形的對邊相等,四個角都為直角)
(1)求證:AE=EC;   
(2)求EC的長;      
(3)求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形ABCD是正方形(提示:正方形四邊相等,四個角都是90°)

(1)如圖1,點(diǎn)G是BC邊上任意一點(diǎn)(不與點(diǎn)B、C重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E.
求證:△ABF≌△DAE;(2)直接寫出(1)中,線段EF與AF、BF的等量關(guān)系
EF=AF-BF
EF=AF-BF
;
(3)①如圖2,若點(diǎn)G是CD邊上任意一點(diǎn)(不與點(diǎn)C、D重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,則圖中全等三角形是
△ABF≌△DAE
△ABF≌△DAE
,線段EF與AF、BF的等量關(guān)系是
EF=BF-AF
EF=BF-AF
;
②如圖3,若點(diǎn)G是CD延長線上任意一點(diǎn),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,線段EF與AF、BF的等量關(guān)系是
EF=AF+BF
EF=AF+BF
;
(4)若點(diǎn)G是BC延長線上任意一點(diǎn),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,請畫圖、探究線段EF與AF、BF的等量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案