(2011•歷城區(qū)一模)2008年以來隨著金融危機的不斷曼延,我市某縣的返鄉(xiāng)農(nóng)民工逐漸增多,政府部門決定利用現(xiàn)有經(jīng)過培訓的349名男職工和295名女職工推薦到某企業(yè)生產(chǎn)A、B兩種大型產(chǎn)品共50個.已知生產(chǎn)一個A型產(chǎn)品需男職工8名,女職工4名;生產(chǎn)一個B型產(chǎn)品需男職工5名,女職工9名.
請你根據(jù)所學知識為這家企業(yè)分析A、B兩種大型產(chǎn)品如何調(diào)配,問符合題意的調(diào)配方案有幾種?請你幫助設計出來;如果為了擴大就業(yè),企業(yè)應選擇哪種方案?
【答案】分析:設生產(chǎn)A種產(chǎn)品x個,則B種產(chǎn)品為(50-x)個,根據(jù)兩家企業(yè)共用到的男職工不超過349人和共用的女職工不超過295人作為不等關系列不等式組,根據(jù)人數(shù)是正整數(shù)即可獲取分配方案,通過計算各種方案的總?cè)藬?shù)可選擇最佳方案.
解答:解:設生產(chǎn)A種產(chǎn)品x個,則B種產(chǎn)品為(50-x)個,(2分)
依題意,得
(6分)
解這個不等式組,得

∴31≤x≤33(8分)
∵x是整數(shù)
∴x可取31,32,33(9分)
∴可設計三種搭配方案:
①生產(chǎn)A種31個B種19個,
②A種32個B種18個,
③A種33個B種17個(10分)
其中①需男職工:31×8+19×5=343,女職工:9×19+4×31=295,共計638人
②需男職工:32×8+18×5=346,女職工:9×18+4×32=290,共計636人
③需男職工:33×8+17×5=349,女職工:9×17+4×33=285,共計634人
所以,如果為了擴大就業(yè),企業(yè)應選擇方案①.(12分)
點評:本題考查一元一次不等式組的應用,將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,讀懂題列出不等式關系式即可求解.解決問題的關鍵是讀懂題意,找到關鍵描述語,找到所求的量的等量關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年中考數(shù)學考前沖刺試卷(解析版) 題型:解答題

(2011•歷城區(qū)一模)已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB為直徑的圓M交OC于D、E,連接AD、BD、BE.

(1)在不添加其他字母和線的前提下,直接寫出圖1中的兩對相似三角形.
______,______;
(2)直角梯形OABC中,以O為坐標原點,A在x軸正半軸上建立直角坐標系(如圖2),若拋物線y=ax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.
①寫出頂點B的坐標(用a的代數(shù)式表示)______;
②求拋物線的解析式;
③在x軸下方的拋物線上是否存在這樣的點P:過點P做PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年湖北省黃岡市黃梅縣中考數(shù)學模擬試卷(13)(解析版) 題型:解答題

(2011•歷城區(qū)一模)已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB為直徑的圓M交OC于D、E,連接AD、BD、BE.

(1)在不添加其他字母和線的前提下,直接寫出圖1中的兩對相似三角形.
______,______;
(2)直角梯形OABC中,以O為坐標原點,A在x軸正半軸上建立直角坐標系(如圖2),若拋物線y=ax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.
①寫出頂點B的坐標(用a的代數(shù)式表示)______;
②求拋物線的解析式;
③在x軸下方的拋物線上是否存在這樣的點P:過點P做PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年山東省濟南市歷城區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2011•歷城區(qū)一模)已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB為直徑的圓M交OC于D、E,連接AD、BD、BE.

(1)在不添加其他字母和線的前提下,直接寫出圖1中的兩對相似三角形.
______,______;
(2)直角梯形OABC中,以O為坐標原點,A在x軸正半軸上建立直角坐標系(如圖2),若拋物線y=ax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.
①寫出頂點B的坐標(用a的代數(shù)式表示)______;
②求拋物線的解析式;
③在x軸下方的拋物線上是否存在這樣的點P:過點P做PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學模擬試卷2(解析版) 題型:解答題

(2011•歷城區(qū)一模)已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB為直徑的圓M交OC于D、E,連接AD、BD、BE.

(1)在不添加其他字母和線的前提下,直接寫出圖1中的兩對相似三角形.
______,______;
(2)直角梯形OABC中,以O為坐標原點,A在x軸正半軸上建立直角坐標系(如圖2),若拋物線y=ax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.
①寫出頂點B的坐標(用a的代數(shù)式表示)______;
②求拋物線的解析式;
③在x軸下方的拋物線上是否存在這樣的點P:過點P做PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年河南省南陽市淅川縣中考數(shù)學一模試卷(解析版) 題型:解答題

(2011•歷城區(qū)一模)已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB為直徑的圓M交OC于D、E,連接AD、BD、BE.

(1)在不添加其他字母和線的前提下,直接寫出圖1中的兩對相似三角形.
______,______;
(2)直角梯形OABC中,以O為坐標原點,A在x軸正半軸上建立直角坐標系(如圖2),若拋物線y=ax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.
①寫出頂點B的坐標(用a的代數(shù)式表示)______;
②求拋物線的解析式;
③在x軸下方的拋物線上是否存在這樣的點P:過點P做PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案