(1)如圖1,BP為ABC的角平分線,PMAB于M,PNBC于N,AB =30,BC =23,求ABP與BPC的面積的比值;
(2)如圖2,分別以ABC的邊AB、AC為邊向外作等邊三角形ABD和等邊三角形ACE,CD與BE相交于點(diǎn)O,判斷AOD與AOE的數(shù)量關(guān)系,并證明;
(3)在四邊形ABCD中,已知BC=DC,且AB≠AD,對(duì)角線AC平分BAD,請(qǐng)畫出圖形,并直接寫出B和D的數(shù)量關(guān)系.
        

(1)

平分










∴所求面積比值為
(2)答:∠AOD與∠AOE的數(shù)量關(guān)系為相等.
證明:如圖2,過(guò)點(diǎn)A作AM⊥DC于M,AN⊥BE于N,

∵△ABD和△ACE都是等邊三角形,
∴AD=AB,AC=AE,∠DAB=∠CAE=60°.
∵∠BAC=∠CAB,
∴∠DAC=∠BAE.
∴△DAC≌△BAE.
∴DC=BE,
∴SDAC=SBAE
∵S△DAC=DC•AM,S△BAE=BE•AN,
∴AM=AN.
∴點(diǎn)A在∠DOE的角平分線上.
∴∠AOD=∠AOE.
(3)作CM⊥AB,CN⊥AD,

∵AC為∠BAD的角平分線,
∴CM=CN,
∵CB=DC,
∴△CMB≌△CND,
∴∠MBC=∠NDC,
∵∠MBC+∠ABC=180°,
∴∠ADC+∠ABC=180°,即∠B+∠D=180°.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,BP為△ABC的角平分線,PM⊥AB于M,PN⊥BC于N,AB=30,BC=23,請(qǐng)補(bǔ)全圖形,并求△ABP與△BPC的面積的比值;
(2)如圖2,分別以△ABC的邊AB、AC為邊向外作等邊三角形ABD和等邊三角形ACE,CD與BE相交于點(diǎn)O,判斷∠AOD與∠AOE的數(shù)量關(guān)系,并證明;
(3)在四邊形ABCD中,已知BC=DC,且AB≠AD,對(duì)角線AC平分∠BAD,請(qǐng)直接寫出∠B和∠D的數(shù)量關(guān)系.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
(1)如圖1,BP為△ABC的角平分線,PM⊥AB于M,PN⊥BC于N,AB=50,BC=60,請(qǐng)補(bǔ)全圖形,并直接寫出△ABP與△BPC面積的比值;
(2)如圖2,分別以△ABC的邊AB、AC為邊向外作等邊三角形ABD和ACE,CD與BE相交于點(diǎn)O,求證:BE=CD;
(3)在(2)的條件下判斷∠AOD與∠AOE的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆北京市八年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(1)如圖1,BP為ABC的角平分線,PMAB于M,PNBC于N,AB =30,BC =23,求ABP與BPC的面積的比值;

(2)如圖2,分別以ABC的邊AB、AC為邊向外作等邊三角形ABD和等邊三角形ACE,CD與BE相交于點(diǎn)O,判斷AOD與AOE的數(shù)量關(guān)系,并證明;

(3)在四邊形ABCD中,已知BC=DC,且AB≠AD,對(duì)角線AC平分BAD,請(qǐng)畫出圖形,并直接寫出B和D的數(shù)量關(guān)系.

 

        

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)如圖1,BP為△ABC的角平分線,PM⊥AB于M,PN⊥BC于N,AB=30,BC=23,請(qǐng)補(bǔ)全圖形,并求△ABP與△BPC的面積的比值;
(2)如圖2,分別以△ABC的邊AB、AC為邊向外作等邊三角形ABD和等邊三角形ACE,CD與BE相交于點(diǎn)O,判斷∠AOD與∠AOE的數(shù)量關(guān)系,并證明;
(3)在四邊形ABCD中,已知BC=DC,且AB≠AD,對(duì)角線AC平分∠BAD,請(qǐng)直接寫出∠B和∠D的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案