【題目】如圖①,半徑為R,圓心角為n°的扇形面積是S扇形=,由弧長(zhǎng)l=,得S扇形==R=lR.通過(guò)觀察,我們發(fā)現(xiàn)S扇形=lR類似于S三角形=×底×高.
類比扇形,我們探索扇環(huán)(如圖②,兩個(gè)同心圓圍成的圓環(huán)被扇形截得的一部分交作扇環(huán))的面積公式及其應(yīng)用.
(1)設(shè)扇環(huán)的面積為S扇環(huán) , 的長(zhǎng)為l1 , 的長(zhǎng)為l2 , 線段AD的長(zhǎng)為h(即兩個(gè)同心圓半徑R與r的差).類比S梯形=×(上底+下底)×高,用含l1 , l2 , h的代數(shù)式表示S扇環(huán) , 并證明;
(2)用一段長(zhǎng)為40m的籬笆圍成一個(gè)如圖②所示的扇環(huán)形花園,線段AD的長(zhǎng)h為多少時(shí),花園的面積最大,最大面積是多少?
【答案】
(1)
解:S扇環(huán)=(l1﹣l2)h,
證明:設(shè)大扇形半徑為R,小扇形半徑為r,圓心角度數(shù)為n,則由l=,得R=,r=
所以圖中扇環(huán)的面積S=×l1×R﹣×l2×r
=l1﹣l2
=(l12﹣l22)
=(l1+l2)(l1﹣l2)
=(R+r)(l1﹣l2)
=(l1+l2)(R﹣r)
=(l1+l2)h,
故猜想正確.
(2)
解:根據(jù)題意得:l1+l2=40﹣2h,
則S扇環(huán)=(l1+l2)h
=(40﹣2h)h
=﹣h2+20h
=﹣(h﹣10)2+100
∵﹣1<0,
∴開(kāi)口向下,有最大值,
當(dāng)h=10時(shí),最大值是100,
即線段AD的長(zhǎng)h為10m時(shí),花園的面積最大,最大面積是100m2.
【解析】(1)根據(jù)扇形公式之間的關(guān)系,結(jié)合已知條件推出結(jié)果即可;
(2)求出l1+l2=40﹣2h,代入(1)的結(jié)果,化成頂點(diǎn)式,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣8,0),點(diǎn)B的坐標(biāo)為(﹣8,6),直線BC∥x軸,交y軸于點(diǎn)C,將四邊形OABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)α度得到四邊形OA′B′C′,此時(shí)直線OA′、直線B′C′分別與直線BC相交于點(diǎn)P、Q.
(1)四邊形OABC的形狀是 , 當(dāng)α=90°時(shí), 的值是 .
(2)①如圖2,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在y軸正半軸上時(shí),求 的值;
②如圖3,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在BC的延長(zhǎng)線上時(shí),求△OPB′的面積.
(3)在四邊形OABC旋轉(zhuǎn)過(guò)程中,當(dāng)0°<α≤180°時(shí),是否存在這樣的點(diǎn)P和點(diǎn)Q,使BP= BQ?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人的錢包內(nèi)有10元、20元和50元的紙幣各1張,從中隨機(jī)取出2張紙幣.
(1)求取出紙幣的總額是30元的概率
(2)找出總額超過(guò)51元的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某倉(cāng)儲(chǔ)中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上
(1)求斜坡AB的水平寬度BC。
(2)矩形DEFG為長(zhǎng)方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時(shí),求點(diǎn)D離地面的高。(≈2.236,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①,圖②,圖③都是4×4的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1.在圖①,圖②中已畫出線段AB,在圖③中已畫出點(diǎn)A.按下列要求畫圖:
(1)在圖①中,以格點(diǎn)為頂點(diǎn),AB為一邊畫一個(gè)等腰三角形;
(2)在圖②中,以格點(diǎn)為頂點(diǎn),AB為一邊畫一個(gè)正方形;
(3)在圖③中,以點(diǎn)A為一個(gè)頂點(diǎn),另外三個(gè)頂點(diǎn)也在格點(diǎn)上,畫一個(gè)面積最大的正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a(x﹣1)2+4與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)P在這條拋物線上,且不與B、C兩點(diǎn)重合.過(guò)點(diǎn)P作y軸的垂線與射線BC交于點(diǎn)Q,以PQ為邊作Rt△PQF,使∠PQF=90°,點(diǎn)F在點(diǎn)Q的下方,且QF=1.設(shè)線段PQ的長(zhǎng)度為d,點(diǎn)P的橫坐標(biāo)為m.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式.
(2)求d與m之間的函數(shù)關(guān)系式.
(3)當(dāng)Rt△PQF的邊PF被y軸平分時(shí),求d的值.
(4)以O(shè)B為邊作等腰直角三角形OBD,當(dāng)0<m<3時(shí),直接寫出點(diǎn)F落在△OBD的邊上時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“世界家庭日”前夕,某校團(tuán)委隨機(jī)抽取了n名本校學(xué)生,對(duì)“世界家庭日”當(dāng)天所喜歡的家庭活動(dòng)方式進(jìn)行問(wèn)卷調(diào)查.問(wèn)卷中的家庭活動(dòng)方式包括:A.在家里聚餐; B.去影院看電影; C.到公園游玩; D.進(jìn)行其他活動(dòng)
每位學(xué)生在問(wèn)卷調(diào)查時(shí)都按要求只選擇了其中一種喜歡的活動(dòng)方式,該校團(tuán)委收回全部問(wèn)卷后,將收集到的數(shù)據(jù)整理并繪制成如圖所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)求n的值;
(2)四種方式中最受學(xué)生喜歡的方式為_(kāi)_(用A、B、C、D作答);選擇該種方式的學(xué)生人數(shù)占被調(diào)查的學(xué)生人數(shù)的百分比為_(kāi)____。
(3)根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)該校1800名學(xué)生中喜歡C方式的學(xué)生比喜歡B方式的學(xué)生多的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年益陽(yáng)市的地區(qū)生產(chǎn)總值(第一、二、三產(chǎn)業(yè)的增加值之和)已進(jìn)入千億元俱樂(lè)部,如圖表示2014年益陽(yáng)市第一、二、三產(chǎn)業(yè)增加值的部分情況,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題
(1)2014年益陽(yáng)市的地區(qū)生產(chǎn)總值為多少億元?
(2)請(qǐng)將條形統(tǒng)計(jì)圖中第二產(chǎn)業(yè)部分補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中第二產(chǎn)業(yè)對(duì)應(yīng)的扇形的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線y1拋物線的一部分,且表達(dá)式為:y1=(x2﹣2x﹣3)(x≤3)曲線y2與曲線y1關(guān)于直線x=3對(duì)稱.
(1)求A、B、C三點(diǎn)的坐標(biāo)和曲線y2的表達(dá)式;
(2)過(guò)點(diǎn)D作CD∥x軸交曲線y1于點(diǎn)D,連接AD,在曲線y2上有一點(diǎn)M,使得四邊形ACDM為箏形(如果一個(gè)四邊形的一條對(duì)角線被另一條對(duì)角線垂直平分,這樣的四邊形為箏形),請(qǐng)求出點(diǎn)M的橫坐標(biāo);
(3)設(shè)直線CM與x軸交于點(diǎn)N,試問(wèn)在線段MN下方的曲線y2上是否存在一點(diǎn)P,使△PMN的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com