如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(0,4)為圓心,半徑為4的圓交y軸正半軸于點(diǎn)A,AB是⊙C的切線(xiàn).動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從O點(diǎn)開(kāi)始沿x軸正方向以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),且動(dòng)點(diǎn)P、Q從點(diǎn)A和點(diǎn)O同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=1時(shí),得到P1、Q1兩點(diǎn),求經(jīng)過(guò)A、P1、Q1三點(diǎn)的拋物線(xiàn)解析式及對(duì)稱(chēng)軸l;
(2)當(dāng)t為何值時(shí),直線(xiàn)PQ與⊙C相切并寫(xiě)出此時(shí)點(diǎn)P和點(diǎn)Q的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)對(duì)稱(chēng)軸l上存在一點(diǎn)N,使NP+NQ最小,求出點(diǎn)N的坐標(biāo)并說(shuō)明理由.

【答案】分析:(1)先求出t=1時(shí),AP和OQ的長(zhǎng),即可求得P1,Q1的坐標(biāo),然后用待定系數(shù)法即可得出拋物線(xiàn)的解析式.進(jìn)而可求出對(duì)稱(chēng)軸l的解析式.
(2)當(dāng)直線(xiàn)PQ與圓C相切時(shí),連接CP,CQ則有Rt△CMP∽R(shí)t△QMC(M為PG與圓的切點(diǎn)),因此可設(shè)當(dāng)t=a秒時(shí),PQ與圓相切,然后用a表示出AP,OQ的長(zhǎng)即PM,QM的長(zhǎng)(切線(xiàn)長(zhǎng)定理).由此可求出a的值.
(3)本題的關(guān)鍵是確定N的位置,先找出與P點(diǎn)關(guān)于直線(xiàn)l對(duì)稱(chēng)的點(diǎn)P′的坐標(biāo),連接P′Q,那么P′Q與直線(xiàn)l的交點(diǎn)即為所求的N點(diǎn),可先求出直線(xiàn)P′Q的解析式,進(jìn)而可求出N點(diǎn)的坐標(biāo).
解答:解:(1)由題意得A、P1、Q1的坐標(biāo)分別為A(0,8)、P1(1,8)、Q1(4,0)(1分)
設(shè)所求拋物線(xiàn)解析式為y=ax2+bx+c

∴a=-,b=,c=8
∴所求拋物線(xiàn)為y=-x2++8
對(duì)稱(chēng)軸為直線(xiàn)l:x=;

(2)設(shè)t=a時(shí),PQ與⊙C相切于點(diǎn)M
連接CP、CM、CQ,則PA=PM=a,QO=QM=4a
又∵CP、CQ分別平分∠APQ和∠OQP,
而∠APQ+∠OQP=180°
∴∠PCQ=90°
∴PC⊥CQ
∴Rt△CMP∽R(shí)t△QMC

∴a=±2
由于時(shí)間a只能取正數(shù),
所以a=2
即當(dāng)運(yùn)動(dòng)時(shí)間t=2時(shí),PQ與⊙C相切
此時(shí):P(2,8),Q(8,0);

(3)∵A(0,8),P(2,8),Q(8,0),
∴拋物線(xiàn)解析式為:y=-x2+x+8,
此時(shí)對(duì)稱(chēng)軸l:x=1,點(diǎn)P關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)為P'(0,8),
則直線(xiàn)P'Q的解析式為:y=-x+8,
當(dāng)x=1時(shí),y=-1+8=7.
因此N點(diǎn)的坐標(biāo)為(1,7).
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定、切線(xiàn)的性質(zhì)、切線(xiàn)長(zhǎng)定理等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案