如圖,以點(diǎn)O為圓心的兩個同心圓中,大圓的弦AB切小圓于點(diǎn)C,若AB=16,OC=6,則大圓的直徑為   
【答案】分析:連接OB,根據(jù)切線的性質(zhì)定理,OC⊥AB;根據(jù)垂徑定理可求得BC=8,在Rt△OBC中利用勾股定理可求OB=10,即大圓的直徑為20.
解答:解:連接OB;
∵AB切小圓于點(diǎn)C,
∴OC⊥AB,
∴BC=AB=×16=8;
在Rt△OBC中,
OB===10,
∴大圓的直徑為20.
點(diǎn)評:通過一道題將垂徑定理和切割線定理和勾股定理結(jié)合起來,而且難度不大,是一道好題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以點(diǎn)O為圓心的兩個同心圓,半徑分別為5和3,若大圓的弦AB與小圓相交,則弦長AB的取值范圍是( 。
A、8≤AB≤10B、AB≥8C、8<AB≤10D、8<AB<10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以點(diǎn)O為圓心的圓與反比例函數(shù)的圖象相交,若其中一個交點(diǎn)P的坐標(biāo)為(5,1),則圖中兩塊陰影部分的面積和為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,以點(diǎn)P為圓心的圓弧與x軸交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(4,2),點(diǎn)A的坐標(biāo)為(2,0),則點(diǎn)B的坐標(biāo)為
(6,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是以點(diǎn)O為圓心的半圓,AB是半圓的一條弦,延長OB與過點(diǎn)A的直線交于點(diǎn)C,AB=BC=OB.
(1)試求∠C的度數(shù).
(2)若 D是AC上一點(diǎn),且AD=BD,試說明BD是⊙O的切線.
(3)在(2)的情況下,若圓O的半徑為2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以點(diǎn)O為圓心的兩個同心圓,當(dāng)大圓的弦AB與小圓相切時弦長AB=8,則這兩個同心圓所形成的圓環(huán)的面積是
16π
16π

查看答案和解析>>

同步練習(xí)冊答案