【題目】點,在數(shù)軸上分別表示有理數(shù),,,兩點之間的距離表示為,在數(shù)軸上,兩點之間的距離.已知數(shù)軸上,兩點表示數(shù),滿足,點為數(shù)軸上一動點,其對應(yīng)的數(shù)為.
(1),兩點之間的距離是.
(2)與之間的距離表示為.
(3)數(shù)軸上是否存在點,使點到點,點的距離之和為?若存在,請求出的值;若不存在,說明理由.
(4)現(xiàn)在點,點分別以單位/秒和單位/秒的速度同時向右運動,當(dāng)點與點之間的距離為個單位長度時,求點所對應(yīng)的數(shù)是多少?
【答案】(1);(2);(3)或;(4)點A所對應(yīng)的數(shù)是或14.
【解析】
(1)根據(jù)絕對值的非負(fù)性求出a,b,即可得到A,B之間的距離;
(2)在數(shù)軸上A、B兩點之間的距離為AB=|a-b|,依此即可求解;
(3)分兩種情況:點P在點A的左邊,點P在點B的右邊,進行討論即可求解;
(4)分兩種情況:點A在點B的左邊,點A在點B的右邊,進行討論即可求解.
(1)∵
∴a=-2,b=6,
∴A點表示的數(shù)為-2,B點表示的數(shù)為6,
A,B之間的距離為
(2)x與4之間的距離表示為|x(4)|=|x+4|
(3)點P在點A的左邊時:16=-2-x+6-x,解得x=-6,
點P在點B的右邊時:16=x-(-2)+x-6,解得x=10,
∴x的值為或;
(4)當(dāng)點A在點B的左邊,設(shè)運動時間為t,
(6+0.5t)-(-2+2t)=4,解得t=
點A所對應(yīng)的數(shù)是
當(dāng)點A在點B的右邊,設(shè)運動時間為t,
(-2+2t) - (6+0.5t)=4,解得t=8
點A所對應(yīng)的數(shù)是14
故點A所對應(yīng)的數(shù)是或14.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b是-5的相反數(shù),c=,且a、b、c分別是點A、B、C在數(shù)軸上對應(yīng)的數(shù).若動點P從點A出發(fā)沿數(shù)軸正方向運動,動點Q同時從點B出發(fā)也沿數(shù)軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒1個單位長度.
(1)求a、b、c的值;
(2)P、Q同時出發(fā),求運動幾秒后,點P可以追上點Q?
(3)在(2)的條件下,P、Q出發(fā)的同時,動點M從點C出發(fā)沿數(shù)軸正方向運動,速度為每秒6個單位長度,點M追上點Q后立即返回沿數(shù)軸負(fù)方向運動,追上后點M再運動幾秒,M到Q的距離等于M到P距離的兩倍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,拋物線與x軸相交于點A,B,與y軸相交于點C. 已知A,C兩點的坐標(biāo)分別為A(-4,0), C(0,4).
(1)求拋物線的表達式;
(2)如果點P,Q在拋物線上(P點在對稱軸左邊),且PQ∥AO,PQ=2AO,求P,Q的坐標(biāo);
(3)動點M在直線y=x+4上,且△ABC與△COM相似,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為△ABC邊AC的中點,AD∥BC交BO的延長線于點D,連接DC,DB平分∠ADC,作DE⊥BC,垂足為E.
(1)求證:四邊形ABCD為菱形;
(2)若BD=8,AC=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是幾何學(xué)中的明珠,充滿著魅力,千百年來,人們對它趨之若鶩,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛好者,向常春在1994年構(gòu)造發(fā)現(xiàn)了一個新的證法:把兩個全等的直角三角形如圖1放置,其三邊長分別為a、b、c,顯然∠DAB=∠B=90°,AC⊥DE.
(1)請用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再通過探究這三個圖形面積之間的關(guān)系,證明:勾股定理a2+b2=c2;
(2)如圖2,鐵路上A、B兩點(看作直線上的兩點)相距40千米,C、D為兩個村莊(看作兩個點),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=24千米,BC=16千米,在AB上有一個供應(yīng)站P,且PC=PD,求出AP的距離;
(3)借助(2)的思考過程與幾何模型,直接寫出代數(shù)式的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查市場上某品牌方便面的色素含量是否符合國家標(biāo)準(zhǔn),工作人員在超市里隨機抽取了某品牌的方便面進行檢驗.圖1和圖2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,其中A、B、C、D分別代表色素含量為0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,圖1的條形圖表示的是抽查的方便面中色素含量分布的袋數(shù),圖2的扇形圖表示的是抽查的方便面中色素的各種含量占抽查總數(shù)的百分比.請解答以下問題:
(1)本次調(diào)查一共抽查了多少袋方便面?
(2)將圖1中色素含量為B的部分補充完整;
(3)圖2中的色素含量為D的方便面所占的百分比是多少?
(4)若色素含量超過0.15%即為不合格產(chǎn)品,某超市這種品牌的方便面共有10000袋,那么其中不合格的產(chǎn)品有多少袋?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分別為邊AB、AC的中點,將△ABC繞點B順時針旋轉(zhuǎn)120°到△A1BC1的位置,則整個旋轉(zhuǎn)過程中線段OH所掃過部分的面積(即陰影部分面積)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達A景區(qū),繼續(xù)向東走2.5千米到達B景區(qū),然后又回頭向西走8.5千米到達C景區(qū),最后回到景區(qū)大門.
(1)以景區(qū)大門為原點,向東為正方向,以1個單位長表示1千米,建立如圖所示的數(shù)軸,請在數(shù)軸上表示出上述A、B、C三個景區(qū)的位置.
(2)A景區(qū)與C景區(qū)之間的距離是多少?
(3)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充足電而途中不充電的情況下完成此次任務(wù)?請計算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程mx=2﹣x的解為整數(shù),且m為負(fù)整數(shù),求代數(shù)式5m2﹣[m2﹣(6m﹣5m2)﹣2(m2﹣3m)]的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com