(1)閱讀證明
①如圖1,在△ABC所在平面上存在一點(diǎn)P,使它到三角形三頂點(diǎn)的距離之和最小,則稱點(diǎn)P為△ABC的費(fèi)馬點(diǎn),此時(shí)PA+PB+PC的值為△ABC的費(fèi)馬距離.
②如圖2,已知點(diǎn)P為等邊△ABC外接圓的
BC
上任意一點(diǎn).求證:PB+PC=PA.
(2)知識遷移
根據(jù)(1)的結(jié)論,我們有如下探尋△ABC(其中∠A,∠B,∠C均小于120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
第一步:如圖3,在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在
BC
上取一點(diǎn)P0,連接P0A,P0B,P0C,P0D.易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+
P0D
P0D
;
第三步:根據(jù)(1)①中定義,在圖3中找出△ABC的費(fèi)馬點(diǎn)P,線段
AD
AD
的長度即為△ABC的費(fèi)馬距離.
(3)知識應(yīng)用
已知三村莊A,B,C構(gòu)成了如圖4所示的△ABC(其中∠A,∠B,∠C均小于120°),現(xiàn)選取一點(diǎn)P打水井,使水井P到三村莊A,B,C所鋪設(shè)的輸水管總長度最。筝斔芸傞L度的最小值.
分析:(1)根據(jù)已知首先得出△PCE為等邊三角形,進(jìn)而得出△ACP≌△BCE(SAS)即AP=BE=BP+PE=BP+PC;
(2)利用(1)中結(jié)論得出P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+P0D;以及線段的性質(zhì)“兩點(diǎn)之間線段最短”容易獲解;
(3)在(2)的基礎(chǔ)上先畫出圖形,再利用勾股定理求解.
解答:解:(1)如圖2,延長BP至E,使PE=PC.
∵在等邊△ABC中,
∴∠EPC=∠BAC=60°,
∵PC=PE,
∴△PCE為等邊三角形,
∴PC=PE,∠PCE=60°,
∴∠BCP+∠PCE=∠ACB+∠BCP,
∴∠ACP=∠BCE,
∵在△ACP和△BCE中,
BC=AC
∠BCE=∠ACP
CE=PC
,
∴△ACP≌△BCE(SAS).
∴AP=BE=BP+PE=BP+PC;

(2)由(1)得出:第一步:如圖3,在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在
BC
上取一點(diǎn)P0,連接P0A,P0B,P0C,P0D.易知P0A+P0B+P0C=P0A+(P0B+P0C)=P0A+P0D;
第三步:根據(jù)(1)①中定義,在圖3中找出△ABC的費(fèi)馬點(diǎn)P,線段AD的長度即為△ABC的費(fèi)馬距離.

(3)如圖4,以BC為邊在△ABC的外部作等邊△BCD,連接AD.
∴AD的長就是△ABC的費(fèi)馬距離.
可得∠ABD=90°
∴AD=
AB2+BD2
=5(km).
∴輸水管總長度的最小值為5千米.
故答案為:P0D;AD.
點(diǎn)評:此題主要考查了等邊三角形的性質(zhì)、三角形相似、解直角三角形等知識.難度很大,有利于培養(yǎng)同學(xué)們鉆研問題和探索問題的精神.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,解答相應(yīng)問題:
已知△ABC是等邊三角形,AD是高,設(shè)AD=h.點(diǎn)P(不與點(diǎn)A、B、C重合)到AB的距離PE=h1,到AC的距離PF=h2,到BC的距離PH=h3
如圖1,當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),我們?nèi)菀装l(fā)現(xiàn):h1=
1
2
h,h2=
1
2
h,因此得到:h1+h2=h.
小明同學(xué)大膽猜想提出問題:如圖2,若點(diǎn)P在BC邊上,但不與點(diǎn)D重合,結(jié)論h1+h2=h還成立嗎?通過證明,他得到了肯定的答案.證明如下:
證明:如圖3,連接AP.
∴S△ABC=S△ABP+S△APC
設(shè)等邊三角形的邊長AB=BC=CA=a.
∵AD⊥BC,PE⊥AB,PF⊥AC,
1
2
BC•AD=
1
2
AB•PE+
1
2
AC•PF
1
2
a•h=
1
2
a•h1+
1
2
a•h2
∴h1+h2=h.
(1)進(jìn)一步猜想:當(dāng)點(diǎn)P在BC的延長線上,上述結(jié)論還成立嗎?若成立,請你證明;若不成立,請猜想h1,h2與 h之間的數(shù)量關(guān)系,并證明.(借助答題卡上的圖4)
(2)我們?nèi)菀字,?dāng)點(diǎn)P在CB的延長線及直線AB,AC上時(shí),情況與前述類似,這里不再說明.
繼續(xù)猜想,你會(huì)進(jìn)一步提出怎樣的問題呢?請?jiān)诖痤}卡上借助圖5精英家教網(wǎng)畫出示意圖,寫出你提出的問題,并直接寫出結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

23、閱讀理解:如圖(1),已知直線m∥n,A、B 為直線n上兩點(diǎn),C、D為直線m上兩點(diǎn),容易證明:△ABC的面積=△ABD的面積.
根據(jù)上述內(nèi)容解決以下問題:已知正方形ABCD的邊長為4,G是邊CD上一點(diǎn),以CG為邊作正方形GCEF.
(1)如圖(2),當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),△BDF的面積為
8

(2)如圖(3),當(dāng)點(diǎn)G是CD的中點(diǎn)時(shí),△BDF的面積為
8

(3)如圖(4),當(dāng)CG=a時(shí),則△BDF的面積為
8
,并說明理由.
探索應(yīng)用:小張家有一塊正方形的土地如圖(5),由于修建高速公路被占去一塊三角形BCP區(qū)域.現(xiàn)決定在DP右側(cè)補(bǔ)給小張一塊土地,補(bǔ)償后,土地變?yōu)樗倪呅蜛BMD,要求補(bǔ)償后的四邊形ABMD的面積與原來形正方形ABCD的面積相等且M在射線BP上,請你在圖中畫出M點(diǎn)的位置,并簡要敘述做法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點(diǎn),點(diǎn)P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解與應(yīng)用:
如圖,在邊長為3的正方形ABCD中,點(diǎn)E為對角線BD上的一點(diǎn),且BE=BC,F(xiàn)為CE上一點(diǎn),F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試?yán)蒙鲜鼋Y(jié)論求出FM+FN的長.
(2)類比與推理:
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點(diǎn)”放寬為“在三角形內(nèi)任一點(diǎn)”,即:
已知等邊△ABC內(nèi)任意一點(diǎn)P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(3)拓展與延伸:
若正n邊形A1A2…An,內(nèi)部任意一點(diǎn)P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個(gè)定值.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•青海)如圖(*),四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫出了如下的證明過程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請你完成證明過程給小強(qiáng)看,若不成立請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
如圖(1),在四邊形ABCD中,對角線AC⊥BD,垂足為點(diǎn)O.
求證:S四邊形ABCD=
1
2
AC•BD;
證明:∵AC⊥BD,
∴S四邊形ABCD=S△ACD+S△ACB=
1
2
AC•OD+
1
2
AC•BO=
1
2
AC(OD+OB)=
1
2
AC•BD
解答下列問題:
(1)上述證明得到的結(jié)論可敘述為
對角線互相垂直的四邊形的面積等于對角線乘積的一半
對角線互相垂直的四邊形的面積等于對角線乘積的一半
;
(2)如圖2,在梯形ABCD中,AB∥CD,AD=BC,AC⊥BD,且AC=8,則S梯形ABCD=
32
32
;
(3)如圖3,在菱形ABCD中,AB=5,AC=8,則S菱形ABCD=
24
24

查看答案和解析>>

同步練習(xí)冊答案