在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程 ▲ .
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.
(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照圖3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AF和AH為三邊能否構(gòu)成三角形?若能構(gòu)成,請判斷這個(gè)三角形的形狀,若不能構(gòu)成,請說明理由.
(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'=BB'=CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關(guān)系.
(1)將△ABC繞點(diǎn)O旋轉(zhuǎn)180°(2)60°,理由見解析(3)能夠構(gòu)成三角形,理由見解析(4)S△AOB'+S△B'PR+S△PQA<
解析:解:(1)將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC…………………………2分
(缺旋轉(zhuǎn)中心或旋轉(zhuǎn)角各扣1分)
(2)連接BB',由題意得EF垂直平分BC,故BB'=B'C,由翻折可得,
B'C=BC,∴△BB'C為等邊三角形.∴∠B'CB=60°,
(或由三角函數(shù)FC:B'C=1:2求出∠B'CB=60°也可以.)
∴∠B'CG=30°,∴∠B'GC=60°………………………………………5分
(3)能夠構(gòu)成三角形……………………………………………………………6分
分別取CE、EG、GI的中點(diǎn)P、Q、R,連接DP、FQ、HR、AD、AF、AH,∵△ABC中,BA=BC,根據(jù)平移變換的性質(zhì),△CDE、△EFG和△GHI都是等腰三角形,∴DP⊥CE,FQ⊥EG,HR⊥GI.
在Rt△AHR中,AH=AI=4a,AH2=HR2+AR2,HR2=a2,
則DP2=FQ2=HR2=a2,
AD2=AP2+DP2=6a2,AF2=AQ2+FQ2=10a2,
新三角形三邊長為4a、a、a.
∵AH2=AD2+AF2 ∴新三角形為直角三角形.………………………8分
(或通過轉(zhuǎn)換得新三角形三邊就是AD、DI、AI)
(4)將△BOC'沿BB'方向平移2個(gè)單位,所移成的三角形記為△B'PR,將△COA'沿A'A方向平移2個(gè)單位,所移成的三角形記為△AQR.由于OQ=OA+AQ=OA+OA'=AA'=4,OP=OB'+B'P=OB'+OB=BB'=4.又∠QOP=60°,則PQ=OQ=OP=4,
又因?yàn)?i>QR+PR=OC+OC',故O、R、P三點(diǎn)共線.因?yàn)?i>S△QOP=4,所以S△AOB'+S△BOC'+S△COA'=S△AOB'+S△B'PR+S△PQA<………………………………10分
根據(jù)旋轉(zhuǎn)的性質(zhì)和平移變換的性質(zhì)求解
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
15 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省無錫市新區(qū)九年級二模數(shù)學(xué)卷(帶解析) 題型:解答題
在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程 ▲ .
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.
(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照圖3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AF和AH為三邊能否構(gòu)成三角形?若能構(gòu)成,請判斷這個(gè)三角形的形狀,若不能構(gòu)成,請說明理由.
(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'=BB'=CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市新區(qū)九年級二模數(shù)學(xué)卷(解析版) 題型:解答題
在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程 ▲ .
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.
(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照圖3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AF和AH為三邊能否構(gòu)成三角形?若能構(gòu)成,請判斷這個(gè)三角形的形狀,若不能構(gòu)成,請說明理由.
(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'=BB'=CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com