【題目】將一對直角三角板如圖放置,點(diǎn)C在FD的延長線上,點(diǎn)B在ED上,∠F=∠ACB=90°,AB∥CF,∠E=45°,∠A=60°,AC=8,則CD的長度是_________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,B(5,0),點(diǎn)A在第一象限,且OA=OB,sin∠AOB=.
(1)求過點(diǎn)O,A,B三點(diǎn)的拋物線的解析式.
(2)若y=的圖象過(1)中的拋物線的頂點(diǎn),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知經(jīng)過點(diǎn)A(﹣3,0)的拋物線y=ax2+2ax﹣3與y軸交于點(diǎn)C,點(diǎn)B與點(diǎn)A關(guān)于該拋物線的對稱軸對稱,D為該拋物線的頂點(diǎn).
(1)直接寫出該拋物線的對稱軸以及點(diǎn)B的坐標(biāo)、點(diǎn)C的坐標(biāo)、點(diǎn)D的坐標(biāo);
(2)聯(lián)結(jié)AD、DC、CB,求四邊形ABCD的面積;
(3)聯(lián)結(jié)AC.如果點(diǎn)E在該拋物線上,過點(diǎn)E作x軸的垂線,垂足為H,線段EH交線段AC于點(diǎn)F.當(dāng)EF=2FH時,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn)A(-1,0),B(3,0)兩點(diǎn),與y軸交點(diǎn)于C(0,-3).
(1)確定該拋物線的解析式,并求出頂點(diǎn)D的坐標(biāo);
(2)在拋物線的對稱軸上找一點(diǎn)M使得∠AMC=90°,請求出滿足條件的所有的點(diǎn)M的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,使得∠APB=∠ACO ?若存在,請求出P點(diǎn)的橫坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實(shí)踐四個方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學(xué)生共有1200人,試估計(jì)該校喜愛看電視的學(xué)生人數(shù);
(3)若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(n,b),B(m,a)且m+n=1.
(1)當(dāng)b=a時,直接寫出函數(shù)圖象的對稱軸;
(2)求b和c(用只含字母a、n的代數(shù)式表示):
(3)當(dāng)a<0時,函數(shù)有最大值-1,b+c≥a,n≤,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=15,sin∠BAC=.點(diǎn)D在邊AB上(不與點(diǎn)A、B重合),以AD為半徑的⊙A與射線AC相交于點(diǎn)E,射線DE與射線BC相交于點(diǎn)F,射線AF與⊙A交于點(diǎn)G.
(1)如圖,設(shè)AD=x,用x的代數(shù)式表示DE的長;
(2)如果點(diǎn)E是的中點(diǎn),求∠DFA的余切值;
(3)如果△AFD為直角三角形,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 經(jīng)過點(diǎn),與軸相交于,兩點(diǎn),
(1)拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)在拋物線的對稱軸上,且位于軸的上方,將沿沿直線翻折得到,若點(diǎn)恰好落在拋物線的對稱軸上,求點(diǎn)和點(diǎn)的坐標(biāo);
(3)設(shè)是拋物線上位于對稱軸右側(cè)的一點(diǎn),點(diǎn)在拋物線的對稱軸上,當(dāng)為等邊三角形時,求直線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(2m+1)x2+4mx+2m﹣3=0有兩個不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使方程的兩個實(shí)數(shù)根的倒數(shù)之和等于﹣1?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com