【題目】如圖,在正方形ABCD中,EF分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長交BC的延長線于點(diǎn)G

(1)求證:ABE∽△DEF;

(2)若正方形的邊長為4,求BG的長.

【答案】1)見解析(210

【解析】

1)利用正方形的性質(zhì),可得∠A=∠D,根據(jù)已知條件可知,根據(jù)兩邊對(duì)應(yīng)成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據(jù)平行線分線段成比例定理,可得CG的長,即可求出BG的長.

1)證明:∵四邊形ABCD為正方形,

AD=AB=DC=BC, ∠A=∠D=90°,

AE=ED

,

∵DF=DC,

∴△ABE∽△DEF;

2)解:∵四邊形ABCD為正方形,

EDBG,

∵DF=DC,正方形的邊長為4

ED=2,CG=6,

BG=BC+CG=10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD中,E為對(duì)角線BD上一點(diǎn),過E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.

(1)求證:EG=CG且EG⊥CG;

(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.

(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,且AB=BC.AD是⊙O的直徑,AC、BD交于點(diǎn)E,PDB延長線上一點(diǎn),且PB=BE.

(1)求證:ABE∽△DBA;

(2)試判斷PA與⊙O的位置關(guān)系,并說明理由;

(3)若EBD的中點(diǎn),求tanADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一漁船由西往東航行,在點(diǎn)測(cè)得海島位于北偏東的方向,前進(jìn)海里到達(dá)點(diǎn),此時(shí),測(cè)得海島位于北偏東的方向,則海島到航線的距離等于________海里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知 三角形ABC各頂點(diǎn)在格點(diǎn)上

1)直接寫出三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)

A   B   C   ;

2)畫出三角形ABC關(guān)于y軸對(duì)稱的三角形A′B′C′.

3)求三角形ABC的面積;

4)直接與出A′C′y軸交點(diǎn)的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為12,3,正放置的四個(gè)正方形的面積依次是S1,S2S3,S4,則S1+S4=(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)圖象經(jīng)過點(diǎn)M(2,6)

(1)求這個(gè)函數(shù)的解析式,并指出它的圖象位于哪些象限?

(2)在這個(gè)圖象上任取兩個(gè)點(diǎn)A(a,b)和B(a′,b′),如果a>a′,那么bb′怎樣的大小關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,BAC=90°,AE是過A點(diǎn)的一條直線,且B,CAE的異側(cè),BDAED,CEAEE.

(1)ABDCAE全等嗎?BDDE+CE相等嗎?請(qǐng)說明理由。

(2)如圖2,若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖②所示的位置(BD<CE)時(shí),其余條件不變,則BDDECE的關(guān)系如何?請(qǐng)說明理由

(3)如圖3,若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖③所示的位置(BD>CE)時(shí),其余條件不變,則BDDE、CE的關(guān)系如何?

(4)根據(jù)以上的討論,請(qǐng)用簡潔的語言表達(dá)BDDECE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的中,,且上一點(diǎn).今打算在上找一點(diǎn),在上找一點(diǎn),使得全等,以下是甲、乙兩人的作法:

(甲)連接,作的中垂線分別交、點(diǎn)、點(diǎn),則兩點(diǎn)即為所求

(乙)過作與平行的直線交點(diǎn),過作與平行的直線交點(diǎn),則、兩點(diǎn)即為所求

對(duì)于甲、乙兩人的作法,下列判斷何者正確?(  )

A. 兩人皆正確B. 兩人皆錯(cuò)誤

C. 甲正確,乙錯(cuò)誤D. 甲錯(cuò)誤,乙正確

查看答案和解析>>

同步練習(xí)冊(cè)答案