【題目】如圖,在平面直角坐標(biāo)系xOy中,對(duì)正方形ABCD及其內(nèi)部的每個(gè)點(diǎn)進(jìn)行如下操作:把每個(gè)點(diǎn)的橫、縱坐標(biāo)都乘以同一個(gè)實(shí)數(shù)a,將得到的點(diǎn)先向右平移m個(gè)單位,再向上平移n個(gè)單位(m>0,n>0),得到正方形A'B'C'D'及其內(nèi)部的點(diǎn),其中點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A',B'.已知正方形ABCD內(nèi)部的一個(gè)點(diǎn)F經(jīng)過(guò)上述操作后得到的對(duì)應(yīng)點(diǎn)F'與點(diǎn)F重合,則點(diǎn)F的坐標(biāo)是( 。
A. (1,4) B. (1,5) C. (﹣1,4) D. (4,1)
【答案】A
【解析】
首先根據(jù)點(diǎn)A到A′,B到B′的點(diǎn)的坐標(biāo)可得方程組 ,解可得a、m、n的值,設(shè)F點(diǎn)的坐標(biāo)為(x,y),點(diǎn)F′點(diǎn)F重合可列出方程組,再解可得F點(diǎn)坐標(biāo).
由點(diǎn)A到A′,可得方程組
由B到B′,可得方程組,
解得
設(shè)F點(diǎn)的坐標(biāo)為(x,y),點(diǎn)F′點(diǎn)F重合得到方程組
解得,
即F(1,4).
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家八縱八橫高鐵網(wǎng)絡(luò)規(guī)劃中“京昆通道”的重要組成部分──西成高鐵于2017年12月6日開(kāi)通運(yùn)營(yíng),西安至成都列車(chē)運(yùn)行時(shí)間由14小時(shí)縮短為3.5小時(shí).張明和王強(qiáng)相約從成都坐高鐵到西安旅游.如圖,張明家(記作A)在成都東站(記作B)南偏西30°的方向且相距4000米,王強(qiáng)家(記作C)在成都東站南偏東60°的方向且相距3000米,則張明家與王強(qiáng)家的距離為( 。
A. 6000米 B. 5000米 C. 4000米 D. 2000米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡CD旁一棵樹(shù)AB的高度,他們先在點(diǎn)C處測(cè)得樹(shù)頂B的仰角為60°,然后在坡頂D測(cè)得樹(shù)頂B的仰角為30°,已知DE⊥EA,斜坡CD的長(zhǎng)度為30m,DE的長(zhǎng)為15m,則樹(shù)AB的高度是_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,AB與⊙O相切于點(diǎn)A.四邊形ABCD是平行四邊形,BC交⊙O于點(diǎn)E.
(1)證明直線(xiàn)CD與⊙O相切;
(2)若⊙O的半徑為5 cm,弦CE的長(zhǎng)為8 cm,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A(﹣1,3)、B(n,﹣1).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y1>y2時(shí),直接寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+2ax+c(a>0,c<0),與x軸交于A、B兩點(diǎn)(A在B左側(cè)),與y軸交于點(diǎn)C,A點(diǎn)坐標(biāo)為(﹣3,0),拋物線(xiàn)頂點(diǎn)為D,△ACD的面積為3.
(1)求二次函數(shù)解析式;
(2)點(diǎn)P(m,n)是拋物線(xiàn)第三象限內(nèi)一點(diǎn),P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)Q在第一象限內(nèi),當(dāng)QB2取最小值時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖1,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)W的函數(shù)表達(dá)式為y=﹣x2+x+4.拋物線(xiàn)W與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè),與y軸交于點(diǎn)C,它的對(duì)稱(chēng)軸與x軸交于點(diǎn)D,直線(xiàn)l經(jīng)過(guò)C、D兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo)及直線(xiàn)l的函數(shù)表達(dá)式.
(2)將拋物線(xiàn)W沿x軸向右平移得到拋物線(xiàn)W′,設(shè)拋物線(xiàn)W′的對(duì)稱(chēng)軸與直線(xiàn)l交于點(diǎn)F,當(dāng)△ACF為直角三角形時(shí),求點(diǎn)F的坐標(biāo),并直接寫(xiě)出此時(shí)拋物線(xiàn)W′的函數(shù)表達(dá)式.
(3)如圖2,連接AC,CB,將△ACD沿x軸向右平移m個(gè)單位(0<m≤5),得到△A′C′D′.設(shè)A′C交直線(xiàn)l于點(diǎn)M,C′D′交CB于點(diǎn)N,連接CC′,MN.求四邊形CMNC′的面積(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時(shí)成立的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對(duì)角線(xiàn)BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時(shí).
①若點(diǎn)P的縱坐標(biāo)為2,求直線(xiàn)AB的函數(shù)表達(dá)式.
②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com