【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點(diǎn),且 = ,連接CF并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)E,連接AC,若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為( )
A.45°
B.50°
C.55°
D.60°
【答案】B
【解析】解:∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°, ∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.
∵ = ,∠BAC=25°,
∴∠DCE=∠BAC=25°,
∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.
故選B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解圓心角、弧、弦的關(guān)系(在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半),還要掌握?qǐng)A內(nèi)接四邊形的性質(zhì)(把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是長(zhǎng)方形紙袋,將紙袋沿EF折疊成圖2,再沿BF折疊成圖3,若∠DEF=α,用α表示圖3中∠CFE的大小為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(1,4),B(3,m)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于O,OD平分∠AOF,OE⊥CD于點(diǎn)O,∠1=50°,求∠BOC、∠BOF的度數(shù).
解:∵OE⊥CD( ),
∴∠DOE=_____°( ),
∵∠1=50°( ),
∴∠AOD=∠________-∠________=________°,
∵∠BOC與∠AOD為_______角(____________),
∴∠BOC=∠________=∠_________°(_____________),
∵OD平分∠AOF(______________),
且∠AOD=____________°(______________),
∴∠AOF=2∠__________=________°( ),
∵∠BOF+∠AOF=______°( ),
∴∠BOF=______°-∠AOF=_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“直角”在初中幾何學(xué)習(xí)中無(wú)處不在. 如圖,已知∠AOB,請(qǐng)仿照小麗的方式,再用兩種不同的方法判斷∠AOB是否為直角(僅限用直尺和圓規(guī)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點(diǎn),且 = ,連接CF并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)E,連接AC.若∠ABC=110°,∠BAC=20°,則∠E的度數(shù)為( )
A.60°
B.55°
C.50°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(7分)如圖,EF//AD, =.求證:∠DGA+∠BAC=180°.請(qǐng)將說(shuō)明過(guò)程填寫完成.
證明:∵EF//AD,(已知)
∴=_____(_____________________________).
又∵=(______)
∴=(________________________).
∴AB//______(____________________________)
∴∠DGA+∠BAC=180°(_____________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】看圖填空,并在括號(hào)內(nèi)注明說(shuō)理依據(jù).
如圖,已知,,,,與平行嗎?與平行嗎?
解:因?yàn)?/span>,(已知),
所以.
所以 ( ).
又因?yàn)?/span> (已知),
所以.( )
所以.
同理可得, .
所以( ).
所以 (同位角相等,兩直線平行).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為﹣2,0,4,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)如果點(diǎn)P到點(diǎn)M點(diǎn)N的距離相等,則x= .
(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是10?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.
(3)如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com