已知△ABC的兩邊長分別為5,13,若周長為整數(shù),則周長的最大值為________.

35
分析:根據三角形的三邊關系“第三邊大于兩邊之差,而小于兩邊之和”,求得第三邊的取值范圍;再根據周長是整數(shù),從而求得周長的最大值.
解答:根據三角形的三邊關系得出:
13-5<第三邊<13+5,
即8<第三邊<18,
∵周長為整數(shù),
∴第三邊最大值為17,
∴周長的最大值為5+13+17=35,
故答案為35.
點評:本題主要考查了三角形的三邊關系以及三角形周長的計算,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,已知△ABC的兩邊長為m、n,夾角為α,求作所有可能滿足下列條件的三角形EFG:含有一個內角為α;有兩條邊長分別為m、n,且與△ABC不全等.(要求:尺規(guī)作圖,不寫畫法,保留作圖痕跡.在圖中標注m、n、α、E、F、G)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC的兩邊長a=3,c=5,且第三邊長b為關于x的一元二次方程x2-4x+m=0的兩個正整數(shù)根之一,求sinA的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC的兩邊長為m、n,夾角為α,求作△EFG,使得∠E=∠α;有兩條邊長分別為m、n,且與△ABC不全等.(要求:作出所有滿足條件的△EFG,尺規(guī)作圖,不寫畫法,保留作圖痕跡.在圖中標注m、n、α、E、F、G)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC的兩邊長分別為AB=2和AC=6,第三邊上的中線AD=x,則x的取值范圍是
2<x<4
2<x<4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC的兩邊長分別為2和3,則第三邊x的取值范圍是
1<x<5
1<x<5

查看答案和解析>>

同步練習冊答案