(2006•武漢)(人教版)已知:OA、OB是⊙O的半徑,且OA⊥OB,P是射線OA上一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交直線OA于點E.
(1)如圖①,若點P在線段OA上,求證:∠OBP+∠AQE=45°;
(2)若點P在線段OA的延長線上,其它條件不變,∠OBP與∠AQE之間是否存在某種確定的等量關(guān)系?請你完成圖②,并寫出結(jié)論(不需要證明).

【答案】分析:(1)連接OQ,則OQ⊥QE,根據(jù)等腰直角三角形兩底角相等可得∠OBP=∠OQB,再根據(jù)∠BQA=45°,即可推出∠AQE+∠OBP=90°-∠OQA=45°;
(2)連接OQ,可得△OBQ是等腰三角形,所以∠OBQ=∠OQB,由QE是⊙O的切線可得OQ⊥QE,根據(jù)圓周角定理可得∠AQB=135°,從而得到∠OQA=135°-∠OQB,然后整理即可得到∠OBP-∠AQE=45°.
解答:(1)證明:如圖①,連接OQ,
∵OB=OQ,
∴∠OBP=∠OQB,
∵OA⊥OB,
∴∠BQA=∠AOB=×90°=45°,
∵EQ是切線,
∴∠OQE=90°,
∴∠OBP+∠AQE=∠OQB+∠AQE=90°-∠BQA=90°-45°=45°;

(2)解:如圖②,連接OQ,
∵OB=OQ,
∴∠OBQ=∠OQB,
∵OA⊥OB,
∴∠BQA=×(360°-90°)=135°,
∴∠OQA=∠BQA-∠OQB=135°-∠OBQ,
∵EQ是切線,
∴∠OQE=90°,
∴135°-∠OBQ+∠AQE=90°,
整理得,∠OBQ-∠AQE=45°,
即∠OBP-∠AQE=45°.
點評:此題主要考查圓的切線的性質(zhì)及同圓的半徑相等等知識.此題(2)問為探索題,培養(yǎng)同學(xué)們的類比思想和探索問題的能力,此種問題一般都是繼續(xù)利用前一問的求解思路進行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識》(01)(解析版) 題型:選擇題

(2006•武漢)函數(shù)y=中,自變量x的取值范圍是( )
A.x≠0
B.x>1
C.x≠1
D.x≠-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《分式》(02)(解析版) 題型:選擇題

(2006•武漢)函數(shù)y=中,自變量x的取值范圍是( )
A.x≠0
B.x>1
C.x≠1
D.x≠-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣西貴港市桂平市中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2006•武漢)函數(shù)y=中,自變量x的取值范圍是( )
A.x≠0
B.x>1
C.x≠1
D.x≠-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省武漢市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•武漢)(人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點,交y軸正半軸于點C,且x12+x22=10.
(1)求此二次函數(shù)的解析式;
(2)是否存在過點D(0,-)的直線與拋物線交于點M、N,與x軸交于點E,使得點M、N關(guān)于點E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省武漢市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2006•武漢)已知二次函數(shù)的圖象開口向下,且經(jīng)過原點.請寫出一個符合條件的二次函數(shù)的解析式:   

查看答案和解析>>

同步練習(xí)冊答案