如圖,直線與拋物線相交于A,B兩點(diǎn),與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,設(shè)△OCD的面積為S,且。
(1)求b的值;
(2)求證:點(diǎn)在反比例函數(shù)的圖象上;
(3)求證:。
(1)
(2)把直線解析式化為,代入得到關(guān)于y的一元二次方程,根據(jù)一元二次方程根與系數(shù)的關(guān)系,得到,從而點(diǎn)在反比例函數(shù)的圖象上。
(3)首先根據(jù)勾股定理和逆定理證明△OAB是直角三角形,從而得到△AEO∽△OFB,得比例式即可得證。
【解析】
分析:(1)由直線與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,求出OC,OD,從而根據(jù)已知列式求解即可。
(2)把直線解析式化為,代入得到關(guān)于y的一元二次方程,根據(jù)一元二次方程根與系數(shù)的關(guān)系,得到,從而點(diǎn)在反比例函數(shù)的圖象上。
(3)首先根據(jù)勾股定理和逆定理證明△OAB是直角三角形,從而得到△AEO∽△OFB,得比例式即可得證。
解:(1)∵直線與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,
∴令x=0,得;令y=0,得。∴OC=,OD=。
∴△OCD的面積。
∵,∴,解得。
∵ ,∴。
(2)證明:由(1),直線解析式為,即,代入,得,
整理,得。
∵直線與拋物線相交于A,B,
∴,是方程的兩個(gè)根。
∴根據(jù)一元二次方程根與系數(shù)的關(guān)系,得。
∴點(diǎn)在反比例函數(shù)的圖象上。
(3)證明:由勾股定理,得,
由(2)得。
同理,將代入,
得,即,
∴。
∴。
又,∴。
∴△OAB是直角三角形,即∠AOB=900。
如圖,過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,過(guò)點(diǎn)B作BF⊥x軸于點(diǎn)F,
∵∠AOB=900,
∴∠AOE=900-∠BOF=∠OBF。
又∵∠AEO =∠OFB=900,
∴△AEO∽△OFB!。
∵OE=,BF=,∴。
∴。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
4 |
3 |
4t |
2 |
7 |
32 |
25 |
32 |
2 |
7 |
32 |
25 |
32 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012年浙江省杭州市中考數(shù)學(xué)模擬試卷(15)(解析版) 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知拋物線與坐標(biāo)軸交于A、B、C三點(diǎn),A點(diǎn)的坐標(biāo)為(-1,0),過(guò)點(diǎn)C的直線與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P做PH垂直O(jiān)B于點(diǎn)H,若PB=5t.,且0<t<1, 存在使P,H,Q,為頂點(diǎn)的三角形與三角形COQ相似的t的值有
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com