如圖,直線與拋物線相交于A,B兩點(diǎn),與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,設(shè)△OCD的面積為S,且。

(1)求b的值;

(2)求證:點(diǎn)在反比例函數(shù)的圖象上;

(3)求證:。

 

 

【答案】

(1)

(2)把直線解析式化為,代入得到關(guān)于y的一元二次方程,根據(jù)一元二次方程根與系數(shù)的關(guān)系,得到,從而點(diǎn)在反比例函數(shù)的圖象上。

(3)首先根據(jù)勾股定理和逆定理證明△OAB是直角三角形,從而得到△AEO∽△OFB,得比例式即可得證。

【解析】

分析:(1)由直線與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,求出OC,OD,從而根據(jù)已知列式求解即可。

(2)把直線解析式化為,代入得到關(guān)于y的一元二次方程,根據(jù)一元二次方程根與系數(shù)的關(guān)系,得到,從而點(diǎn)在反比例函數(shù)的圖象上。

(3)首先根據(jù)勾股定理和逆定理證明△OAB是直角三角形,從而得到△AEO∽△OFB,得比例式即可得證。

解:(1)∵直線與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,

∴令x=0,得;令y=0,得。∴OC=,OD=

∴△OCD的面積。

,∴,解得

,∴。

(2)證明:由(1),直線解析式為,即,代入,得,

整理,得

∵直線與拋物線相交于A,B

,是方程的兩個(gè)根。

∴根據(jù)一元二次方程根與系數(shù)的關(guān)系,得。

∴點(diǎn)在反比例函數(shù)的圖象上。

(3)證明:由勾股定理,得

由(2)得。

同理,將代入

,即,

。

,∴

∴△OAB是直角三角形,即∠AOB=900。

如圖,過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,過(guò)點(diǎn)B作BF⊥x軸于點(diǎn)F,

∵∠AOB=900,

∴∠AOE=900-∠BOF=∠OBF。

又∵∠AEO =∠OFB=900,

∴△AEO∽△OFB!。

∵OE=,BF=,∴。

。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=
3
4
x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn),A點(diǎn)的坐標(biāo)為(-1,0),過(guò)點(diǎn)C的直線y=
3
4t
x-3
與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P作PH垂直O(jiān)B于點(diǎn)H,若PB=5t,且0<t<1,存在使P,H,Q為頂點(diǎn)的三角形與三角形COQ相似的t的值有
2
-1;
7
32
;
25
32
2
-1;
7
32
;
25
32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•相城區(qū)模擬)如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,過(guò)點(diǎn)C作CD⊥y軸交該拋物線于點(diǎn)D,且AB=2,CD=4.
(1)該拋物線的對(duì)稱軸為
直線x=2
直線x=2
,B點(diǎn)坐標(biāo)為(
3,0
3,0
),CO=
3
3
;
(2)若P為線段OC上的一個(gè)動(dòng)點(diǎn),四邊形PBQD是平行四邊形,連接PQ.試探究:
①是否存在這樣的點(diǎn)P,使得PQ2=PB2+PD2?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
②當(dāng)PQ長(zhǎng)度最小時(shí),求出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,已知拋物線y=數(shù)學(xué)公式x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn),A點(diǎn)的坐標(biāo)為(-1,0),過(guò)點(diǎn)C的直線數(shù)學(xué)公式與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P作PH垂直O(jiān)B于點(diǎn)H,若PB=5t,且0<t<1,存在使P,H,Q為頂點(diǎn)的三角形與三角形COQ相似的t的值有________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年浙江省杭州市中考數(shù)學(xué)模擬試卷(15)(解析版) 題型:填空題

如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn),A點(diǎn)的坐標(biāo)為(-1,0),過(guò)點(diǎn)C的直線與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P作PH垂直O(jiān)B于點(diǎn)H,若PB=5t,且0<t<1,存在使P,H,Q為頂點(diǎn)的三角形與三角形COQ相似的t的值有   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線與坐標(biāo)軸交于A、B、C三點(diǎn),A點(diǎn)的坐標(biāo)為(-1,0),過(guò)點(diǎn)C的直線與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)P做PH垂直O(jiān)B于點(diǎn)H,若PB=5t.,且0<t<1, 存在使P,H,Q,為頂點(diǎn)的三角形與三角形COQ相似的t的值有                        

查看答案和解析>>

同步練習(xí)冊(cè)答案