【題目】如圖,在矩形ABCD中,AB=4 cm,AD=12 cm,點(diǎn)P在AD邊上以每秒1 cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4 cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在這段時(shí)間內(nèi),當(dāng)運(yùn)動(dòng)時(shí)間=_____時(shí)線段PQ∥AB.
【答案】2.4或4或8或12
【解析】解:當(dāng)AP=BQ時(shí),AB∥BQ.
∵AP∥BQ,AP=BQ,∴四邊形ABQP為平行四邊形,∴QP∥AB.
∵點(diǎn)P運(yùn)動(dòng)的時(shí)間=12÷1=12秒,∴點(diǎn)Q運(yùn)動(dòng)的路程=4×12=48cm,∴點(diǎn)Q可在BC間往返4次,∴在這段時(shí)間內(nèi)PQ與AB有4次平行.
設(shè)運(yùn)動(dòng)時(shí)間為t,則
①第一次平行:t=12-4t,解得:t=2.4(秒);
②第二次平行:t=4t-12,解得:t=4(秒);
③第三次平行:t=4t-24,解得:t=8(秒);
④第三次平行:t=4t-36,解得:t=12(秒).
故答案為:2.4或4或8或12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移 個(gè)單位長度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A第,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)A、B兩地之間的距離: km;
(2)甲的速度為 km/h;乙的速度為30km/h;
(3)點(diǎn)M的坐標(biāo)為 ;
(4)求:甲離B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并計(jì)算:已知線段AB=2 cm,延長線段AB至點(diǎn)C,使得2BC=AB,再反向延長AC至點(diǎn)D,使得AD=AC.
(1)準(zhǔn)確地畫出圖形,并標(biāo)出相應(yīng)的字母;
(2)線段DC的中點(diǎn)是哪個(gè)?線段AB的長是線段DC長的幾分之幾?
(3)求出線段BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請(qǐng)?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:
①該拋物線的對(duì)稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無實(shí)數(shù)根;
③a﹣b+c≥0;
④ 的最小值為3.
其中,正確結(jié)論的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy(如圖),直線 y=x+b經(jīng)過第一、二、三象限,與y軸交于點(diǎn)B,點(diǎn)A(2,t)在直線y=x+b上,連結(jié)AO,△AOB的面積等于1.
(1)求b的值;
(2)如果反比例函數(shù)y= (k是常量,k≠0)的圖象經(jīng)過點(diǎn)A,求這個(gè)反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC的三邊長,且滿足2a4+2b4+c4=2a2c2+2b2c2,則△ABC是( )
A. 等腰三角形 B. 等腰直角三角形
C. 直角三角形 D. 等腰三角形或直角三角形
【答案】B
【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,
∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,
∴c=2a,c=2b,
∴a=b,且a2+b2=c2,
∴△ABC為等腰直角三角形.
故選B.
【題型】單選題
【結(jié)束】
11
【題目】將圖1中陰影部分的小長方形變換到圖2的位置,你能根據(jù)兩個(gè)圖形的面積關(guān)系得到的數(shù)學(xué)公式是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com