(2008•廣東)將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連接CD.

(1)填空:如圖1,AC=______
【答案】分析:(1)根據(jù)勾股定理可得AC=BD==4;易知△ADC≌△BCD,利用四邊形內(nèi)角和是360°可得∠CDB=∠DCA=30°∵∠CAB=30°∴DC∥AB,∵AD=BC∴四邊形ABCD是等腰梯形;
(2)圖中的三角形分為兩類:30°,30°,120°;30°,60°,90度.按此找相似三角形即可;
(3)過P作出△FBP的高.△FBP面積應(yīng)等于FB×PK÷2,易得FB=AB-AF=8-k;則KB等于FB的一半,利用30°的正切值可求得FK的值.注意用t表示的線段應(yīng)大于0.
解答:解:(1)4,4,等腰;

(2)共有9對(duì)相似三角形.
①△DCE、△ABE與△ACD或△BDC兩兩相似,
分別是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5對(duì))
②△ABD∽△EAD,△ABD∽△EBC;(有2對(duì))
③△BAC∽△EAD,△BAC∽△EBC;(有2對(duì))
所以,一共有9對(duì)相似三角形.

(3)由題意知,F(xiàn)P∥AE,
∴∠1=∠PFB,
又∵∠1=∠2=30°,
∴∠PFB=∠2=30°,
∴FP=BP
過點(diǎn)P作PK⊥FB于點(diǎn)K,則FK=BK=FB.
∵AF=t,AB=8,
∴FB=8-t,BK=(8-t).
在Rt△BPK中,PK=BK•tan∠2=(8-t)tan30°=(8-t).
∴△FBP的面積S=•FB•PK=(8-t)•(8-t),
∴S與t之間的函數(shù)關(guān)系式為:
S=(8-t)2,或S=t2-t+,
t的取值范圍為:0≤t<8.
點(diǎn)評(píng):“有效的數(shù)學(xué)學(xué)習(xí)過程不能單純地依賴模仿和記憶;有效的數(shù)學(xué)學(xué)習(xí)過程應(yīng)引導(dǎo)學(xué)生主動(dòng)地從事觀察、實(shí)驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等數(shù)學(xué)活動(dòng),從而使學(xué)生形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)策略”.此題正是在常見的三角板的操作變形中,將幾何中的平移知識(shí),代數(shù)中的函數(shù)知識(shí)有機(jī)地進(jìn)行結(jié)合,要求學(xué)生抓住問題中的內(nèi)在聯(lián)系進(jìn)行探究.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2008•廣東)將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連接CD.

(1)填空:如圖1,AC=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《四邊形》(11)(解析版) 題型:解答題

(2008•廣東)將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連接CD.

(1)填空:如圖1,AC=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年廣東省中山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•廣東)將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連接CD.

(1)填空:如圖1,AC=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年廣東省汕頭市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•廣東)將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連接CD.

(1)填空:如圖1,AC=______

查看答案和解析>>

同步練習(xí)冊(cè)答案