如圖,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的兩個外角,AD平分∠FAC,CD平分∠ECA.
求證:四邊形ABCD是菱形.
證明:∵∠B=60°,AB=AC,∴△ABC為等邊三角形。
∴AB=BC,∠ACB=60°。
∴∠FAC=∠ACE=120°。
∴∠BAD=∠BCD=120°。
∴∠B=∠D=60°。
∴四邊形ABCD是平行四邊形。
∵AB=BC,∴平行四邊形ABCD是菱形。

試題分析:根據(jù)平行四邊形的判定方法得出四邊形ABCD是平行四邊形,再利用菱形的判定得出。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將正方形圖1做如下操作:第1次:分別連結(jié)各邊中點(diǎn)如圖2,得到5個正方形;第2次:將圖2左上角正方形按上述方法在分割如圖3,得到9個正方形…,依此類推,根據(jù)以上操作,若要得到2013個正方形,則需要操作_________次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

長方形的一條對角線的長為10cm,一邊長為6cm,它的面積是(   )
A.60cm2B.64cm2C.24cm2D.48cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,梯形ABCD中,AD∥BC,AB=,BC=4,連結(jié)BD,∠BAD的平分線交BD于點(diǎn)E,且AE∥CD,則AD的長為【   】
A.B.C.D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖①,將四邊形紙片ABCD沿兩組對邊中點(diǎn)連線剪切為四部分,將這四部分密鋪可得到如圖②所示的平行四邊形,若要密鋪后的平行四邊形為矩形,則四邊形ABCD需要滿足的條件是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四邊形ABDE是平行四邊形,C為邊B D延長線上一點(diǎn),連結(jié)AC、CE,使AB=AC.

(1)求證:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若矩形ABCD的對角線長為10,點(diǎn)E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則四邊形EFGH的周長是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD是等腰梯形,∠ABC=60°,若其四邊滿足長度的眾數(shù)為5,平均數(shù)為,上、下底之比為1:2,則BD=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川瀘州6分)如圖,已知ABCD中,F(xiàn)是BC邊的中點(diǎn),連接DF并延長,交AB的延長線于點(diǎn)E.求證:AB=BE.

查看答案和解析>>

同步練習(xí)冊答案