如圖:△ABC內(nèi)接于⊙O,AD⊥BC于D.若AB•AC=16,AD=3,則⊙O半徑是________.


分析:首先作直徑AE,連接CE,易證得△ABD∽△AEC,然后由相似三角形的對應(yīng)邊成比例,即可求得⊙O半徑.
解答:解:作直徑AE,連接CE,
∴∠ACE=90°,
∵AD⊥BC,
∴∠ADB=90°,
∴∠ACE=∠ADB,
∵∠B=∠E,
∴△ABD∽△AEC,

∴AE=,
∵AB•AC=16,AD=3,
∴AE=,
∴⊙O半徑是
故答案為:
點評:此題考查了圓周角定理與相似三角形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長交BC于點D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊答案