【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論:;;;.其中正確的是________________

【答案】①②④⑤

【解析】

由拋物線開口方向得到a0,然后利用拋物線的對稱軸得到b的符號,則可對①進行判斷;利用判別式的意義和拋物線與x軸有2個交點可對②進行判斷;利用x1時,y0可對③進行判斷;利用拋物線的對稱性和x=0時,y0可對④進行判斷;利用b2ax1時,y0,可對⑤進行判斷.

解:∵拋物線開口向下,

a0

∵拋物線的對稱軸為直線x1,

b2a0,

ab0,所以①正確;

∵拋物線與x軸有2個交點,

∴△=b24ac0,即,所以②正確;

x1時,y0,

abc0,所以③錯誤;

∵拋物線的對稱軸為x1,

x=2x=0的函數(shù)值相等,

x=0時,y0,

x=2時,y0,即,所以④正確;

b2a,

x1時,y0,即abc0,

3ac0,所以⑤正確,

故答案為:①②④⑤.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

問題情境:在矩形ABCD中,點EBC邊的中點,將ABE沿直線AE翻折,使點B與點F重合,直線AF交直線CD于點G.

特例探究 實驗小組的同學發(fā)現(xiàn):

1)如圖1,當ABBC時,AGBCCG,請你證明該小組發(fā)現(xiàn)的結(jié)論;

2)當ABBC4時,求CG的長;

延伸拓展:(3)實知小組的同學在實驗小組的啟發(fā)下,進一步探究了當ABBC2時,線段AG,BC,CG之間的數(shù)量關(guān)系,請你直接寫出實知小組的結(jié)論:___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x﹣(m﹣2)=0有實數(shù)根.

(1)求m的取值范圍;

(2)若方程有一個根為x=1,求m的值及另一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形的邊長為6,點,分別在,上,,相交于點,點的中點,連接,則的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,,,以點A為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為,得到矩形AEFG,點B、點C、點D的對應點分別為點E、點F、點G

如圖,當點E落在DC邊上時,直寫出線段EC的長度為______;

如圖,當點E落在線段CF上時,AEDC相交于點H,連接AC,

求證:

直接寫出線段DH的長度為______

如圖設點P為邊FG的中點,連接PBPE,在矩形ABCD旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸交于A、B兩點,y軸交于點C,點為拋物線的頂點,且

1)求拋物線的解析式;

2)設,,求的值;

3)探究坐標軸上是否存在點P,使得以P、A、C三點為頂點的三角形與相似,若存在,請指出點P的位置,并直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一般情況下,中學生完成數(shù)學家庭作業(yè)時,注意力指數(shù)隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).

(1)分別求出線段AB和雙曲線CD的函數(shù)關(guān)系式;

(2)若學生的注意力指數(shù)不低于40為高效時間,根據(jù)圖中信息,求出一般情況下,完成一份數(shù)學家庭作業(yè)的高效時間是多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,EBC上的一點,連接AE,過B點作BHAE,垂足為點H,延長BHCD于點F,連接AF.

(1)求證AE=BF;

(2)若正方形的邊長是5,BE=2,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中∠C=90°、∠A=30°,在AC邊上取點O畫圓使⊙O經(jīng)過A、B兩點,

1)求證:以O為圓心,以OC為半徑的圓與AB相切.

2)下列結(jié)論正確的序號是___________.(少選酌情給分,多選、錯均不給分)

AO=2CO ;

AO=BC

③延長BC交⊙OD,則A、B、D是⊙O的三等分點.

④圖中陰影面積為:

查看答案和解析>>

同步練習冊答案