【題目】如圖,是直立在高速公路邊水平地面上的交通警示牌,經(jīng)測(cè)量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為( )

A.4
B.(2 +2)米
C.(4 ﹣4)米
D.(4 ﹣4)米

【答案】D
【解析】解:在Rt△CMB中,∵∠CMB=90°,MB=AM+AB=12米,∠MBC=30°,
∴CM=MBtan30°=12× =4
在Rt△ADM中,∵∠AMD=90°,∠MAD=45°,
∴∠MAD=∠MDA=45°,
∴MD=AM=4米,
∴CD=CM﹣DM=(4 ﹣4)米,
故答案為:D.
根據(jù)特殊角的正切值求出CM=MBtan30°的值,再根據(jù)等角對(duì)等邊求出CD=CM﹣DM的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBC,∠3+4180°,要證∠1=∠2,請(qǐng)完善證明過程,并在括號(hào)內(nèi)填上相應(yīng)依據(jù):

ADBC(已知)

∴∠l=∠3(   ),

∵∠3+4180°(已知),

BEDF(   )

      (   )

∴∠1=∠2(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABEF,∠C90°,∠B,∠D,∠E三個(gè)角的大小分別是x,yzx,y,z之間滿足的關(guān)系式是(  )

A. x+zyB. x+y+180°C. x+yz90°D. y+zx180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=36°,OE平分∠MON,點(diǎn)A,B分別是射線OM,OE,上的動(dòng)點(diǎn)(AB不與點(diǎn)O重合),點(diǎn)D是線段OB上的動(dòng)點(diǎn),連接AD并延長(zhǎng)交射線ON于點(diǎn)C,設(shè)∠OAC=x,

1)如圖1,若ABON,則

①∠ABO的度數(shù)是______;

②當(dāng)∠BAD=ABD時(shí),x=______

當(dāng)∠BAD=BDA時(shí),x=______

2)如圖2,若ABOM,則是否存在這樣的x的值,使得ABD中有兩個(gè)相等的角?若存在,求出x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計(jì)算:

2)計(jì)算:

3)已知,求:的值.

4)如圖,在四邊形中,,,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地面上小山的兩側(cè)有A,B兩地,為了測(cè)量A,B兩地的距離,讓一熱氣球從小山西側(cè)A地出發(fā)沿與AB成30°角的方向,以每分鐘40m的速度直線飛行,10分鐘后到達(dá)C處,此時(shí)熱氣球上的人測(cè)得CB與AB成70°角,請(qǐng)你用測(cè)得的數(shù)據(jù)求A,B兩地的距離AB長(zhǎng).(結(jié)果用含非特殊角的三角函數(shù)和根式表示即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一條線段AB平移一段距離后得到線段A’B’,連接AA’,BB’可以得到一個(gè)平行四邊形ABB’A’請(qǐng)據(jù)此回答下面問題:

在平面直角坐標(biāo)系中有A點(diǎn)(10),B點(diǎn)(-21),C點(diǎn)(-1-3),若坐標(biāo)平面內(nèi)存在點(diǎn)D,使得A,B,CD四點(diǎn)恰好能構(gòu)成一個(gè)平行四邊形,求D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點(diǎn)

1)求直線的解析式;

2)把直線向右平移并與軸相交于得到,請(qǐng)?jiān)谌鐖D所示平面直角坐標(biāo)系中作出直線;

3)若直線軸交于點(diǎn),與直線交于點(diǎn),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖像與正比例函數(shù)y=kx的圖像交于點(diǎn)M,

(1)求正比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖像寫出使正比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;

(3)求ΔMOP的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案