【題目】與題干中平面圖形有相同對(duì)稱性的平面圖形是( ).
A.
B.
C.
D.
【答案】B
【解析】解:題干中的圖形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形
A是軸對(duì)稱圖形,不符合;
B既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,符合;
C是軸對(duì)稱圖形,不符合;
D是軸對(duì)稱圖形,不符合;
故選B.
【考點(diǎn)精析】通過靈活運(yùn)用軸對(duì)稱圖形和中心對(duì)稱及中心對(duì)稱圖形,掌握兩個(gè)完全一樣的圖形關(guān)于某條直線對(duì)折,如果兩邊能夠完全重合,我們就說這兩個(gè)圖形成軸對(duì)稱,這條直線就對(duì)稱軸;如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱;如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,射線OM平分∠AOC,ON⊥OM.
(1)若∠BOD=70°,求∠AOM和∠CON的度數(shù);
(2)若∠BON=50°,求∠AOM和∠CON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB交AB于點(diǎn)D;∠CAE=∠B.
(1)如果AC=3.5 cm,求AB的長度;
(2)猜想:ED與AB的位置關(guān)系,并證明你的猜想。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交BC的延長線于F,若∠F=30°,DE=1,則EF的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD頂點(diǎn)A、B在x軸上,點(diǎn)D在y軸上,函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)C(2,3),直線AD交雙曲線于點(diǎn)E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點(diǎn)F.
(1)若EB= OD,求點(diǎn)E的坐標(biāo);
(2)若四邊形ABCD為平行四邊形,求過A、D兩點(diǎn)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC上,∠EDF=∠B.
(1)如圖1,
求證:DECD=DFBE
(2)D為BC中點(diǎn)如圖2,
連接EF.
①求證:ED平分∠BEF;
②若四邊形AEDF為菱形,求∠BAC的度數(shù)及 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn)C(1,0),直線y=﹣x+7與兩坐標(biāo)軸分別交于A,B兩點(diǎn),D,E分別是AB,OA上的動(dòng)點(diǎn),則△CDE周長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請(qǐng)問添加下面哪個(gè)條件不能判斷△ABC≌△DBE的是( )
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點(diǎn)P(2,3),點(diǎn)D是正比例函數(shù)圖象上的一點(diǎn),過點(diǎn)D作y軸的垂線,垂足分別Q,DQ交反比例函數(shù)的圖象于點(diǎn)A,過點(diǎn)A作x軸的垂線,垂足為B,AB交正比例函數(shù)的圖于點(diǎn)E.
(1)求正比例函數(shù)解析式、反比例函數(shù)解析式.
(2)當(dāng)點(diǎn)D的縱坐標(biāo)為9時(shí),求:點(diǎn)E的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com