如圖,已知OA=OB,OC=OD,AD,BC相交于E,則圖中全等三角形的對(duì)數(shù)是


  1. A.
    5
  2. B.
    4
  3. C.
    3
  4. D.
    2
B
分析:根據(jù)已知及全等三角形的判定方法進(jìn)行分析,從而得到答案.做題時(shí)要從已知條件開(kāi)始結(jié)合圖形利用全等的判定方法由易到難逐個(gè)尋找.
解答:∵OA=OB,OC=OD,∠AOD=∠BOC,
∴△AOD≌△BOC,
∴∠A=∠B,
∵OA=OB,OC=OD,
∴AC=BD,
∵∠AEC=∠BED,
∴△ACE≌△BDE,
∴AE=BE,CE=DE,
∵OA=OB,OE=OE,OC=OD,
∴△AOE≌△BOE,△COE≌△DOE,
∴共有四對(duì)全等三角形.
故選B.
點(diǎn)評(píng):本題考查了全等三角形的判定;注意:三角形全等判定方法的應(yīng)用,先根據(jù)已知條件或求證的結(jié)論來(lái)確定三角形,再求證三角形全等,尋找時(shí)要由易到難,不重不漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知OA=OB,數(shù)軸上點(diǎn)C表示的數(shù)是2,那數(shù)軸上線段AC的長(zhǎng)度是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,已知OA=OB,點(diǎn)C在OA上,點(diǎn)D在OB上,OC=OD,AD與BC相交于點(diǎn)E,那么圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過(guò)點(diǎn)D作DE垂直O(jiān)A的延精英家教網(wǎng)長(zhǎng)線交于點(diǎn)E.
(1)證明:△OAB∽△EDA;
(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?請(qǐng)說(shuō)明理由,并求出此時(shí)點(diǎn)C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知OA=OB,那么數(shù)軸上點(diǎn)A與點(diǎn)C的距離是
 
個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知OA=OB,OC=OD,下列結(jié)論中(1)∠A=∠B;(2)DE=CE;(3)連OE,OE平分∠O,正確的有
(1)、(2)、(3)
(1)、(2)、(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案