分析 在DC上截DM=DB,則AB=AM,∠B=∠AMB=2∠C=2∠CAM,因此AM=CM,從而CD=DM+MC=AB+BD,再利用勾股定理求出AB的長(zhǎng)即可.
解答 解:在DC上截DM=DB,
∵AD⊥BC,DM=BD,
∴AD是BM的垂直平分線,
∴AB=AM(線段垂直平分線上的點(diǎn)到線段兩端距離相等),
∴∠B=∠AMB(等邊對(duì)等角),
∵∠B=2∠C,∠AMB=∠C+∠MAC,
∴∠MAC=∠C,
∴AM=CM,
∴CM=AB,
∴CD=DM+MC=BD+AB,
∵在△ABD中,AD=2,BD=1,
∴AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
∴CD=1+$\sqrt{5}$.
故答案為1+$\sqrt{5}$.
點(diǎn)評(píng) 本題主要考查了勾股定理、線段垂直平分線的性質(zhì)等知識(shí),解答本題的關(guān)鍵是添加輔助線證明出CD=DM+MC=BD+AB,此題有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 11 | B. | 12 | C. | 14 | D. | 16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n2+n | B. | n2+n+1 | C. | n2+2n | D. | n2+2n+1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com