【題目】如圖1,過(guò)等邊三角形ABC邊AB上一點(diǎn)D作DE∥BC交邊AC于點(diǎn)E,分別取BC,DE的中點(diǎn)M,N,連接MN.

(1)發(fā)現(xiàn):在圖1中, =;
(2)應(yīng)用:如圖2,將△ADE繞點(diǎn)A旋轉(zhuǎn),請(qǐng)求出 的值;

(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DE的中點(diǎn),若BD⊥CE,請(qǐng)直接寫(xiě)出 的值.

【答案】
(1)
(2)

解:如圖2中,連接AM、AN.

∵△ABC,△ADE都是等邊三角形,BM=MC,DN=NE,

∴AM⊥BC,AN⊥DE,

=sin60°, =sin60°,

= ,

∵∠MAB=∠DAN=30°,

∴∠BAD=∠MAN,

∴△BAD∽△MAN,

= =sin60°=


(3)

解:如圖3中,連接AM、AN,延長(zhǎng)AD交CE于H,交AC于O.

∵AB=AC,AD=AE,BM=CM,DN=NE,

∴AM⊥BC,AN⊥DE,

∵∠BAC=∠DAE,

∴∠ABC=∠ADE,

∴sin∠ABM=sin∠ADN,

=

∵∠BAM= BAC,∠DAN= ∠DAE,

∴∠BAM=∠DAN,

∴∠BAD=∠MAN.

∴△BAD∽△MAN,

= =sin∠ABC,

∵∠BAC=∠DAE,

∴∠BAD=∠CAE,

∵AB=AC,AD=AE,

∴△BAD≌△CAE,

∴∠ABD=∠ACE,

∵BD⊥CE,

∴∠BHC=90°,

∴∠ACE+∠COH=90°,∵∠AOB=∠COH,

∴∠ABD+∠AOB=90°,

∴∠BAO=90°,

∵AB=AC,

∴∠ABC=45°,

=sin45°=


【解析】解:(1)如圖1中,作DH⊥BC于H,連接AM.

∵AB=AC,BM=CM,
∴AM⊥BC,
∵△ADE時(shí)等邊三角形,
∴∠ADE=60°=∠B,
∴DE∥BC,
∵AM⊥BC,
∴AM⊥DE,
∴AM平分線段DE,
∵DN=NE,
∴A、N、M共線,
∴∠NMH=∠MND=∠DHM=90°,
∴四邊形MNDH時(shí)矩形,
∴MN=DH,
= =sin60°= ,
故答案為
(1)如圖1中,作DH⊥BC于H,連接AM.只要證明四邊形MNDH時(shí)矩形,即可解決問(wèn)題.(2)如圖2中,連接AM、AN.只要證明△BAD∽△MAN,利用相似比為 即可解決問(wèn)題.(3)如圖3中,連接AM、AN,延長(zhǎng)AD交CE于H,交AC于O.由△BAD∽△MAN,推出 = =sin∠ABC,只要證明△ABC時(shí)等腰直角三角形即可解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2= (m≠0)的圖象交于點(diǎn)A(﹣1,6),B(a,﹣2).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一假期,成都某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購(gòu)買(mǎi)了前往各地的車(chē)票,如圖是用來(lái)制作完整的車(chē)票種類(lèi)和相應(yīng)數(shù)量的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

若去丙地的車(chē)票占全部車(chē)票的,則總票數(shù)為______ 張,去丁地的車(chē)票有______

若公司采用隨機(jī)抽取的方式發(fā)車(chē)票,小胡先從所有的車(chē)票中隨機(jī)抽取一張所有車(chē)票的形狀、大小、質(zhì)地完全相同、均勻,那么員工小胡抽到去甲地的車(chē)票的概率是多少?

若有一張車(chē)票,小王和小李都想要,他們決定采取擲一枚質(zhì)地均勻的正方體骰子的方式來(lái)確定給誰(shuí),其上的數(shù)字是3的倍數(shù),則給小王,否則給小李請(qǐng)問(wèn)這個(gè)規(guī)則對(duì)雙方是否公平?若公平請(qǐng)說(shuō)明理由;若不公平,請(qǐng)通過(guò)計(jì)算說(shuō)明對(duì)誰(shuí)更有利.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識(shí)了解某廣告牌的高度(圖中GH的長(zhǎng)),經(jīng)測(cè)量知CD=2m,在B處測(cè)得點(diǎn)D的仰角為60°,在A處測(cè)得點(diǎn)C的仰角為30°,AB=10m,且A、B、H三點(diǎn)共線,請(qǐng)根據(jù)以上數(shù)據(jù)計(jì)算GH的長(zhǎng)( ,要求結(jié)果精確得到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,O為直線AB上一點(diǎn),OD平分∠AOC,∠DOE=90°.

(1)∠AOD的余角是 ______ ,∠COD的余角是 ______

(2)OE是∠BOC的平分線嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法:①2a+b=0,②當(dāng)﹣1≤x≤3時(shí),y<0;③3a+c=0;④若(x1 , y1)(x2、y2)在函數(shù)圖象上,當(dāng)0<x1<x2時(shí),y1<y2 , 其中正確的是(
A.①②④
B.①③
C.①②③
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,DE平分∠ADC, 且∠EDO=15°,則∠OED=________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將ABC經(jīng)過(guò)一次平移后得到A′B′C′,圖中標(biāo)出了點(diǎn)D的對(duì)應(yīng)點(diǎn)D′.

(1)根據(jù)特征畫(huà)出平移后的A′B′C′;

(2)利用網(wǎng)格的特征,畫(huà)出AC邊上的高BE并標(biāo)出畫(huà)法過(guò)程中的特征點(diǎn);

(3)A′B′C′的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角板如圖①放置,圖②是由它抽象出的幾何圖形,點(diǎn)B,C,E在同一條直線上,連接CD.求證:CDBE.

查看答案和解析>>

同步練習(xí)冊(cè)答案