如圖,已知AD=30,點(diǎn)B,C是AD上的三等分點(diǎn),分別以AB,BC,CD為直徑作圓,圓心分別為E,F(xiàn),G,AP切⊙G于點(diǎn)P,交⊙F于M,N,則弦MN的長是   
【答案】分析:連接PG,作FH⊥MN于點(diǎn)H,根據(jù)AP是⊙G的切線,因而PG⊥AP,則FH∥PG,可證明△AFH∽△AGP,利用相似比==,可求得FH=3,連接FM,在直角△MFH中根據(jù)勾股定理得到MH=4,則MN=8.
解答:解:連接PG,作FH⊥MN于點(diǎn)H,連接FM,
∵AP是⊙G的切線
∴PG⊥AP
∵FH∥PG
∴△AFH∽△AGP
==
解得FH=3
在直角△MFH中,MH=4
∴MN=8.
點(diǎn)評(píng):本題主要考查切線的性質(zhì)定理,切線垂直于過切點(diǎn)的半徑,并且本題還考查了相似三角形的性質(zhì),對(duì)應(yīng)邊的比相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD=30,點(diǎn)B,C是AD上的三等分點(diǎn),分別以AB,BC,CD為直徑作圓,圓心分別為E,F(xiàn),G,AP切⊙G于點(diǎn)P,交⊙F于M,N,則弦MN的長是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD=30,點(diǎn)B,C是AD上的三等分點(diǎn),分別以AB,BC,CD為直徑作圓,圓心分別為E,F(xiàn),G,AP切⊙G于點(diǎn)P,交⊙F于M,N,求弦MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年山東省濰坊市諸城市中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

如圖,已知AD=30,點(diǎn)B,C是AD上的三等分點(diǎn),分別以AB,BC,CD為直徑作圓,圓心分別為E,F(xiàn),G,AP切⊙G于點(diǎn)P,交⊙F于M,N,則弦MN的長是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《三角形》(07)(解析版) 題型:填空題

(2004•紹興)如圖,已知AD=30,點(diǎn)B,C是AD上的三等分點(diǎn),分別以AB,BC,CD為直徑作圓,圓心分別為E,F(xiàn),G,AP切⊙G于點(diǎn)P,交⊙F于M,N,則弦MN的長是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2004•紹興)如圖,已知AD=30,點(diǎn)B,C是AD上的三等分點(diǎn),分別以AB,BC,CD為直徑作圓,圓心分別為E,F(xiàn),G,AP切⊙G于點(diǎn)P,交⊙F于M,N,則弦MN的長是   

查看答案和解析>>

同步練習(xí)冊(cè)答案