k為何整數(shù)時(shí),函數(shù)y=-x++與函數(shù)y=-x+的交點(diǎn)位于第四象限?并求出此時(shí)k為正整數(shù)時(shí),兩直線與x軸所圍成的三角形的面積.

 

答案:
解析:

解方程組

∴ 兩直線的交點(diǎn)坐標(biāo)為(,)

又∵ 這個(gè)交點(diǎn)在第四象限,∴ 解得-k2

∵ k為整數(shù),∴ k=-1,0,1時(shí),兩直線的交點(diǎn)位于第四象限.

當(dāng)k為正整數(shù)時(shí),k=1

此時(shí),兩直線分別為y=-x+y=-x+.其交點(diǎn)坐標(biāo)為C(,-),且這兩條直線與x軸的交點(diǎn)坐標(biāo)分別為A(,0)B(,0).∴ AB=

∴ SABC=·AB·||

 


提示:

求兩條直線的交點(diǎn)坐標(biāo),即解由其解析式組成的二元一次方程組.求兩直線與x軸圍成的三角形面積的方法:先求出兩直線與x軸的交點(diǎn)的橫坐標(biāo),進(jìn)而求出這兩點(diǎn)間的距離作為三角形的底,再將兩直線交點(diǎn)縱坐標(biāo)的絕對(duì)值作為該三角形的高,代入三角形面積公式即可.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某街心公園要用50塊邊長(zhǎng)為1米的正方形地磚圍成一個(gè)矩形空地ABCD,其中一邊靠墻,墻的長(zhǎng)度足夠大且不鋪設(shè)地磚;另外三邊鋪設(shè)地磚(圖中陰影為地磚鋪設(shè)的部分).若一邊EF用地轉(zhuǎn)x塊(x為整數(shù)),矩形空地ABCD的面積為S平方米.當(dāng)x為何值時(shí),S的值最大?(參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=-
b
2a
時(shí),y最大(。=
4ac-b2
4a
).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索、研究:下圖是按照一定的規(guī)律畫出的一列“樹型”圖,下表的n表示“樹型”圖的序號(hào),an表示第n個(gè)“樹型”圖中“樹枝”的個(gè)數(shù).
圖:精英家教網(wǎng)
表:
 n  1
 an  1 15 
(1)根據(jù)“圖”、“表”可以歸納出an關(guān)于n的關(guān)系式為
 

若直線l1經(jīng)過(guò)點(diǎn)(a1,a2)、(a2,a3),求直線l1對(duì)應(yīng)的函數(shù)關(guān)系式,并說(shuō)明對(duì)任意的正整數(shù)n,點(diǎn)(an,an+1)都在直線l1上.
(2)設(shè)直線l2:y=-x+4與x軸相交于點(diǎn)A,與直線l1相交于點(diǎn)M,雙曲線y=
k
x
(x>0)經(jīng)過(guò)點(diǎn)M,且與直線l2相交于另一點(diǎn)N.
①求點(diǎn)N的坐標(biāo),并在如圖所示的直角坐標(biāo)系中畫出雙曲線及直線l1、l2
②設(shè)H為雙曲線在點(diǎn)M、N之間的部分(不包括點(diǎn)M、N),P為H上一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為t,直線MP與x軸相交于點(diǎn)Q,當(dāng)t為何值時(shí),△MQA的面積等于△PMA的面積的2倍又是否存在t的值,使得△PMA的面積等于1?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
③在y軸上是否存在點(diǎn)G,使得△GMN的周長(zhǎng)最?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為響應(yīng)薄熙來(lái)書記建設(shè)“森林重慶”的號(hào)召,某園藝公司從2010年9月開始積極進(jìn)行植樹造林.該公司第x月種植樹木的畝數(shù)y(畝)與x之間滿足y=x+4,(其中x從9月算起,即9月時(shí)x=1,10月時(shí)x=2,…,且1≤x≤6,x為正整數(shù)).由于植樹規(guī)模擴(kuò)大,每畝的收益P(千元)與種植樹木畝數(shù)y(畝)之間存在如圖(25題圖)所示的變化趨勢(shì).
(1)根據(jù)如圖所示的變化趨勢(shì),直接寫出P與y之間所滿足的函數(shù)關(guān)系表達(dá)式;
(2)行動(dòng)實(shí)施六個(gè)月來(lái),求該每月收益w(千元)與月份x之間的函數(shù)關(guān)系式,并求x為何值時(shí)總收益最大?此時(shí)每畝收益為多少?
(3)進(jìn)入植樹造林的第七個(gè)月,政府出臺(tái)了一項(xiàng)激勵(lì)措施:在“植樹造林”過(guò)程中,每月植樹面積與第六個(gè)月植樹面積相同的部分,按第六月每畝收益進(jìn)行結(jié)算;超出第六月植樹面積的部分,每畝收益將按第六月時(shí)每畝的收益再增加0.6m%進(jìn)行結(jié)算.這樣,該公司第七月植樹面積比第六月增加了m%.另外,第七月時(shí)公司需對(duì)前六個(gè)月種植的所有樹木進(jìn)行保養(yǎng),除去成本后政府給予每畝4m%千元的保養(yǎng)補(bǔ)貼.最后,該公司第七個(gè)月獲得種植樹木的收益和政府保養(yǎng)補(bǔ)貼共702千元.請(qǐng)通過(guò)計(jì)算,估算出m的整數(shù)值.(參考數(shù)據(jù):422=1764,432=1849,442=1936).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:新課程同步練習(xí) 數(shù)學(xué) 八年級(jí)上冊(cè) 題型:044

k為何整數(shù)時(shí),函數(shù)y=-x+與函數(shù)y=-x+的交點(diǎn)位于第四象限?并求出此時(shí)k為正整數(shù)時(shí),兩直線與x軸所圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案