【題目】如圖,正方形,點(diǎn)在上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,點(diǎn),分別為點(diǎn),旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn),連接,,,與交于點(diǎn),與交于點(diǎn).
(1)求證;
(2)直接寫出圖中已經(jīng)存在的所有等腰直角三角形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)已知條件易證,根據(jù)全等三角形的性質(zhì)即可證得;(2)根據(jù)正方形的性質(zhì)可得和為等腰直角三角形;由(1)可得為等腰直角三角形,根據(jù)旋轉(zhuǎn)的性質(zhì)易證為等腰直角三角形;由和為等腰直角三角形,即可得為等腰直角三角形.
(1)證明:∵四邊形為正方形,
∴,,
∵繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,
∴,,
∴為等腰直角三角形,
∴,
∵,,
∴,
∵,
∴,
在和中
,
∴,
∴;
(2)解:∵四邊形為正方形,
∴和為等腰直角三角形;
由(1)得為等腰直角三角形;
∵繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,
∴,,
∴為等腰直角三角形;
∵和為等腰直角三角形,
∴為等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)求該二次函數(shù)與x軸的交點(diǎn)坐標(biāo)和頂點(diǎn);
(2)在所給坐標(biāo)系中畫出該二次函數(shù)的大致圖象,并寫出當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當(dāng)天舉辦了商品有獎(jiǎng)酬賓活動(dòng),凡購物滿200元者,有兩種獎(jiǎng)勵(lì)方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎(jiǎng)的機(jī)會(huì).已知在搖獎(jiǎng)機(jī)內(nèi)裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,搖獎(jiǎng)?wù)弑仨殢膿u獎(jiǎng)機(jī)內(nèi)一次連續(xù)搖出兩個(gè)球,根據(jù)球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請(qǐng)你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當(dāng)天在本店購物滿200元,若只考慮獲得最多的禮品券,請(qǐng)你幫助分析選擇哪種方案較為實(shí)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(5,0),點(diǎn)C的坐標(biāo)為(0,4),四邊形ABCO為矩形,點(diǎn)P為線段BC上的一動(dòng)點(diǎn),若△POA為等腰三角形,且點(diǎn)P在雙曲線y=上,則k值可以是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O在邊AC上,⊙O與△ABC的邊AC,AB分別切于C、D兩點(diǎn),與邊AC交于點(diǎn)E,弦與AB平行,與DO的延長線交于M點(diǎn).
(1)求證:點(diǎn)M是CF的中點(diǎn);
(2)若E是的中點(diǎn),連結(jié)DF,DC,試判斷△DCF的形狀;
(3)在(2)的條件下,若BC=a,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】被譽(yù)為“中原第一高樓”的鄭州會(huì)展賓館(俗稱“玉米樓”)坐落在風(fēng)景如畫的如意湖畔,是來鄭州觀光的游客留影的最佳景點(diǎn).學(xué)完了三角函數(shù)知識(shí)后,劉明和王華決定用自己學(xué)到的知識(shí)測量“玉米樓”的高度.如圖,劉明在點(diǎn)C處測得樓頂B的仰角為45°,王華在高臺(tái)上的D處測得樓頂?shù)难鼋菫?/span>40°.若高臺(tái)DE的高為5米,點(diǎn)D到點(diǎn)C的水平距離EC為47.4米,A,C,E三點(diǎn)共線,求“玉米樓”AB的高度.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列要求,解答相關(guān)問題:
(1)請(qǐng)補(bǔ)全以下求不等式﹣2x2﹣4x≥0的解集的過程
①構(gòu)造函數(shù),畫出圖象:
根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;拋物線的對(duì)稱軸x=﹣1,開口向下,頂點(diǎn)(﹣1,2)與x軸的交點(diǎn)是(0,0),(﹣2,0),用三點(diǎn)法畫出二次函數(shù)y=﹣2x2﹣4x的圖象如圖1所示;
②數(shù)形結(jié)合,求得界點(diǎn):
當(dāng)y=0時(shí),求得方程﹣2x2﹣4x=0的解為 ;
③借助圖象,寫出解集:
由圖象可得不等式﹣2x2﹣4x≥0的解集為 .
(2)利用(1)中求不等式解集的方法步驟,求不等式x2﹣2x+1<4的解集.
①構(gòu)造函數(shù),畫出圖象;
②數(shù)形結(jié)合,求得界點(diǎn);
③借助圖象,寫出解集.
(3)參照以上兩個(gè)求不等式解集的過程,借助一元二次方程的求根公式,直接寫出關(guān)于x的不等式ax2+bx+c>0(a>0)的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com