【題目】改革開(kāi)放以來(lái),由于各階段發(fā)展重心不同,某市的需求結(jié)構(gòu)經(jīng)歷了消費(fèi)投資交替主導(dǎo)、投資消費(fèi)雙輪驅(qū)動(dòng)到消費(fèi)主導(dǎo)的變化.到2007年,某市消費(fèi)率超過(guò)投資率,標(biāo)志著某市經(jīng)濟(jì)增長(zhǎng)由投資消費(fèi)雙輪驅(qū)動(dòng)向消費(fèi)趨于主導(dǎo)過(guò)渡.下圖是某市1978—2017年投資率與消費(fèi)率統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖回答:________年,某市消費(fèi)率與投資率相同;從2000年以后,某市消費(fèi)率逐年上升的時(shí)間段是________.
【答案】1984、2006; 2004—2017年.
【解析】
(1)根據(jù)兩條折線(xiàn)的交點(diǎn)得到消費(fèi)率與投資率相同的年份;
(2)從2000年以后,找折線(xiàn)呈上升趨勢(shì)的時(shí)間段.
解:(1)1984、2006年某市消費(fèi)率與投資率相同;
(2)從2000年以后,某市消費(fèi)率逐年上升的時(shí)間段是2004—2017年,
故答案為:(1)1984、2006;(2)2004—2017年.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E在BC邊上,且AE⊥BC于點(diǎn)E,DE平分∠CDA.若BE∶EC=1∶2,則∠BCD的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(8,0)、點(diǎn)B(0,4),點(diǎn)C、D分別是邊OA、AB的中點(diǎn).將△ACD繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.
(I)如圖①,連接BD′,當(dāng)BD′∥OA時(shí),求點(diǎn)D′的坐標(biāo);
(II)如圖②,當(dāng)α=60°時(shí),求點(diǎn)C′的坐標(biāo);
(III)當(dāng)點(diǎn)B,D′,C′共線(xiàn)時(shí),求點(diǎn)C的坐標(biāo)(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,四邊形ABCD中,BC∥AD,∠A=90°,點(diǎn)P從A點(diǎn)出發(fā),沿折線(xiàn)AB→BC→CD運(yùn)動(dòng),到點(diǎn)D時(shí)停止,已知△PAD的面積s與點(diǎn)P運(yùn)動(dòng)的路程x的函數(shù)圖象如圖②所示,則點(diǎn)P從開(kāi)始到停止運(yùn)動(dòng)的總路程為( 。
A. 4 B. 2+ C. 5 D. 4+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】佳佳調(diào)査了七年級(jí)400名學(xué)生到校的方式,根據(jù)調(diào)查結(jié)果繪制出統(tǒng)計(jì)圖的一部分如圖:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中表示“步行”的扇形圓心角的度數(shù);
(3)估計(jì)在3000名學(xué)生中乘公交的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于E.
(1)求證:BE=AD;(2)若∠DCE=15°,AB=2,求在四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O直徑,P點(diǎn)為半徑OA上異于O點(diǎn)和A點(diǎn)的一個(gè)點(diǎn),過(guò)P點(diǎn)作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點(diǎn),連接AE、DE、AE交CD于F點(diǎn).
(1)求證:DE為⊙O切線(xiàn);
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請(qǐng)猜想PF與FD的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張長(zhǎng)為8cm,寬為6cm的長(zhǎng)方形紙片上,現(xiàn)要剪下一個(gè)腰長(zhǎng)為5cm的等腰三角形(要求:等腰三角形的一個(gè)頂點(diǎn)與長(zhǎng)方形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在長(zhǎng)方形的邊上).則剪下的等腰三角形的底邊長(zhǎng)可以是_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com