如圖,在平行四邊形ABCD中,O1、O2、O3分別是對(duì)角線BD上的三點(diǎn),且BO1=O1O2=O2O3=O3D,連接AO1并延長(zhǎng)交BC于點(diǎn)E,連接EO3并延長(zhǎng)交AD于點(diǎn)F,則AD:DF等于(     )
A.19:2B.9:1C.8:1D.7:1
B

試題分析:解:根據(jù)題意,在平行四邊形ABCD中,易得△BO3E∽△DO3F
∴BE:FD=3:1
∵△BO1E∽△DO1A ∴BE:AD=1:3
∴AD:DF=9:1
∴AF:DF=(AD-FD):DF=(9-1):1=8:1
點(diǎn)評(píng):本題難度中等,考查了平行四邊形的性質(zhì),對(duì)邊相等.利用相似三角形三邊成比例列式,求解即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正多邊形的一個(gè)內(nèi)角和它相鄰的外角的一半的和為160°,則此正多邊形的邊數(shù)為_(kāi)_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,點(diǎn)E、F在對(duì)角線BD上,且BE=DF,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD中,AD∥BC,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F,且AE=CF.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在梯形ABCD中,AB∥CD,AC⊥BD,且AC=5,BD=12,則梯形中位線長(zhǎng)是_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖, 在長(zhǎng)方形ABCD中,AB=3厘米.在CD邊上找一點(diǎn)E,沿直線AE把△ABE折疊,若點(diǎn)D恰好落在BC邊上點(diǎn)F處,且△ABF的面積是6平方厘米,則DE的長(zhǎng)為(  )
A.2cmB.3cmC.2.5cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

兩組鄰邊分別相等的四邊形我們稱它為箏形.
如圖,在箏形中,,,相交于點(diǎn),

(1)求證:①
,;
(2)如果,,求箏形的面積.(8分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,矩形MNPQ中,點(diǎn)E,F(xiàn),G,H分別在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.圖2,圖3,圖4中,四邊形ABCD為矩形,且AB=4,BC=8.


(1)理解與作圖:在圖2,圖3中,點(diǎn)E,F(xiàn)分別在BC,CD邊上,試?yán)谜叫尉W(wǎng)格在圖上作出矩形ABCD的反射四邊形EFGH.
(2)計(jì)算與猜想:求圖2,圖3中反射四邊形EFGH的周長(zhǎng),并猜想矩形ABCD的反射四邊形的周長(zhǎng)是否為定值?
(3)啟發(fā)與證明:如圖4,為了證明上述猜想,小華同學(xué)嘗試延長(zhǎng)GF交BC的延長(zhǎng)線于M,試?yán)眯∪A同學(xué)給我們的啟發(fā)證明(2)中的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形中,,,,,
 =,點(diǎn)上,=4.

(1)線段=      
(2)試判斷△的形狀,并說(shuō)明理由;
(3)現(xiàn)有一動(dòng)點(diǎn)在線段上從點(diǎn)開(kāi)始以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)移動(dòng),設(shè)移動(dòng)時(shí)間為秒(>0).問(wèn)是否存在的值使得△為直角三角形?若存在直接寫(xiě)出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案