如圖所示,點(diǎn)是⊙上一點(diǎn),⊙與⊙相交于、兩點(diǎn),,垂足為,分別交⊙、⊙于、兩點(diǎn),延長(zhǎng)交⊙于,交的延長(zhǎng)線于,交于,連結(jié).
【小題1】求證:;
【小題2】若,求證:;
【小題3】 若,且線段、的長(zhǎng)是關(guān)于的方程的兩個(gè)實(shí)數(shù)根,求、的長(zhǎng).
【小題1】∵BC⊥AD于D,
∴∠BDA=∠CDA=90°,
∴AB、AC分別為⊙O1、⊙O2的直徑.
∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°,
∴∠BGD=∠C.
【小題2】∵∠DO2C=45°,∴∠ABD=45°
∵O2D=O2C,
∴∠C=∠O2DC=(180°-∠DO2C)=67.5°,
∴∠4=22.5°,·
∵∠O2DC=∠ABD+∠F,
∴∠F=∠4=22.5°,∴AD=AF.
【小題3】∵BF=6CD,∴設(shè)CD=k,則BF=6k.
連結(jié)AE,則AE⊥AD,∴AE∥BC,
∴ ∴AE·BF=BD·AF.
又∵在△AO2E和△DO2C中,AO2=DO2
∠AO2E=∠DO2C, O2E=O2C,
∴△AO2E≌△DO2C,∴AE=CD=k,
∴6k2=BD·AF=(BC-CD)(BF-AB).
∵∠BO2A=90°,O2A=O2C,∴BC=AB.
∴6k2=(BC-k)(6k-BC).∴BC2-7kBC+12k2=0,
解得:BC=3k或BC=4k.
當(dāng)BC=3k,BD=2k.
∵BD、BF的長(zhǎng)是關(guān)于x的方程x2-(4m+2)x+4m2+8=0的兩個(gè)實(shí)數(shù)根.
∴由根與系數(shù)的關(guān)系知:BD+BF=2k+6k=8k=4m+2.
整理,得:4m2-12m+29=0.
∵△=(-12)2-4×4×29=-320<0,此方程無(wú)實(shí)數(shù)根.
∴BC=3k(舍).
當(dāng)BC=4k時(shí),BD=3k.
∴3k+6k=4m+2,18k2=4m2+8,整理,
得:m2-8m+16=0,
解得:m1=m2=4,
∴原方程可化為x2-18x+72=0,
解得:x1=6,x2=12, ∴BD=6,BF=12.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2008年江蘇省揚(yáng)州市高郵中學(xué)教改班招生考試數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2007年浙江省溫州市樂(lè)清中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com