如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD的長(zhǎng)為( 。

 

A.

cm

B.

cm

C.

cm

D.

4cm

考點(diǎn):

圓心角、弧、弦的關(guān)系;全等三角形的判定與性質(zhì);勾股定理.

分析:

連接OD,OC,作DE⊥AB于E,OF⊥AC于F,運(yùn)用圓周角定理,可證得∠DOB=∠OAC,即證△AOF≌△OED,所以O(shè)E=AF=3cm,根據(jù)勾股定理,得DE=4cm,在直角三角形ADE中,根據(jù)勾股定理,可求AD的長(zhǎng).

解答:

解:連接OD,OC,作DE⊥AB于E,OF⊥AC于F,

∵∠CAD=∠BAD(角平分線的性質(zhì)),

=,

∴∠DOB=∠OAC=2∠BAD,

∴△AOF≌△OED,

∴OE=AF=AC=3cm,

在Rt△DOE中,DE==4cm,

在Rt△ADE中,AD==4cm.

故選A.

點(diǎn)評(píng):

本題考查了翻折變換及圓的有關(guān)計(jì)算,涉及圓的題目作弦的弦心距是常見(jiàn)的輔助線之一,注意熟練運(yùn)用垂徑定理、圓周角定理和勾股定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,半圓O的直徑AD=12cm,AB,BC,CD分別與半圓O切于點(diǎn)A,E,D.
(1)設(shè)AB=x,CD=y,求y與x之間的函數(shù)關(guān)系式;
(2)如果CD=6,判斷四邊形ABCD的形狀;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,半圓O的直徑AD=12cm,AB、BC、CD分別與半圓O切于點(diǎn)A、E、D.
(1)線段AB、CD與BC之間有什么關(guān)系?并說(shuō)明理由;
(2)設(shè)AB=x,CD=y,求y與x之間的函數(shù)關(guān)系式;
(3)如果AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,半圓O的直徑AB=12cm,射線BM從與線段AB重合的位置起,以每秒6°的旋轉(zhuǎn)速度繞B點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)至BP的位置,BP交半圓于E,設(shè)旋轉(zhuǎn)時(shí)間為ts(0<t<15),
(1)求E點(diǎn)在圓弧上的運(yùn)動(dòng)速度(即每秒走過(guò)的弧長(zhǎng)),結(jié)果保留π.
(2)設(shè)點(diǎn)C始終為
AE
的中點(diǎn),過(guò)C作CD⊥AB于D,AE交CD、CB分別于G、F,過(guò)F作F精英家教網(wǎng)N∥CD,過(guò)C作圓的切線交FN于N.
求證:①CN∥AE;
②四邊形CGFN為菱形;
③是否存在這樣的t值,使BE2=CF•CB?若存在,求t值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,半圓O的直徑為6cm,∠BAC=30°,則陰影部分的面積是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,半圓O的直徑AB=20,將半圓O繞點(diǎn)B順針旋轉(zhuǎn)45°得到半圓O′,與AB交于點(diǎn)P.
(1)求AP的長(zhǎng).
(2)求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊(cè)答案