已知y=y1+y2,y1與x+1成正比例,y2與x+1成反比例,當(dāng)x=0時(shí),y=-5;當(dāng)x=2時(shí),y=-7.
(1)求y與x的函數(shù)關(guān)系式;(2)當(dāng)x=-2時(shí),求y的值.
分析:(1)設(shè)y
1=a(x+1)(a≠0),y
2=
(b≠0),得到y(tǒng)=a(x+1)+
,把(0,-5),(2,-7)代入得到方程組,求出方程組的解即可;
(2)把x=-2代入解析式求出即可.
解答:解:(1)∵y
1與x+1成正比例,y
2與x+1成反比例,
設(shè)y
1=a(x+1)(a≠0),y
2=
(b≠0),
∵y=y
1+y
2,
∴y=a(x+1)+
,
把(0,-5),(2,-7)代入得:
,
解得:
,
∴y=-2(x+1)-
,
答:y與x的函數(shù)關(guān)系式是y=-2(x+1)-
.
(2)當(dāng)x=-2時(shí),y=-2(x+1)-
=-2×(-2+1)-
=5,
答:當(dāng)x=-2時(shí),y的值是5.
點(diǎn)評(píng):本題主要考查對(duì)解二元一次方程組,用待定系數(shù)法求函數(shù)的解析式,求代數(shù)式的值等知識(shí)點(diǎn)的理解和掌握,能正確求出函數(shù)的解析式是解此題的關(guān)鍵.