【題目】(1)如圖1已知:∠B=25°,∠BED=80°,∠D=55°.探究AB與CD有怎樣的位置關(guān)系.
(2)如圖2已知AB∥EF,試猜想∠B,∠F,∠BCF之間的關(guān)系,寫出這種關(guān)系,并加以證明.
(3)如圖3已知AB∥CD,試猜想∠1,∠2,∠3,∠4,∠5之間的關(guān)系,請直接寫出這種關(guān)系,不用證明.
【答案】(1)詳見解析(2)∠BCF=∠B+∠F(3)∠1+∠3+∠5=∠2+∠4
【解析】
(1)過點E作EF∥AB,得∠BEF =25°,得∠DEF=55°,從而可證AB∥CD;
(2)作CD∥AB,根據(jù)平行線的傳遞性得CD∥EF,則根據(jù)平行線的性質(zhì)得∠BCD=∠B,∠DCF=∠F,所以∠BCD+∠DCF=∠B+∠F,故可得結(jié)論;
(3)方法同(2)
(1)過點E作EF∥AB
∵∠B=25°
∴∠BEF=∠B=25°
∵∠BED=80°
∴∠DEF=∠BED-∠BEF=55°
∵∠D=55°
∴∠D=∠DEF
∴EF∥CD
∴AB∥CD
(2)過點C作CD∥AB,則CD∥EF,
∵AB∥CD,
∴∠BCD=∠B,
∵CD∥EF,
∴∠DCF=∠F,
∴∠BCD+∠DCF=∠B+∠F,
即∠C=∠B+∠F.
(3)∠1+∠3+∠5=∠2+∠4,
如圖,
作MN∥AB,
由(2)的結(jié)論得到∠2=∠1+∠6,∠4=∠5+∠7,
∴∠2+∠4=∠1+∠6+∠5+∠7=∠1+∠3+∠5.
科目:初中數(shù)學 來源: 題型:
【題目】為了加強學生課外閱讀,開闊視野,某校開展了“書香校園,從我做起”的主題活動,學校隨機抽取了部分學生,對他們一周的課外閱讀時間進行調(diào)查,繪制出頻率分布表和頻率直方圖的一部分如下:
請根據(jù)圖表信息回答下列問題:
(1)頻數(shù)分布表中的a=____________,b=____________;
(2)將頻數(shù)直方圖補充完整;
(3)學校將每周課外閱讀時間在6小時以上的學生評為“閱讀之星”,請你估計該校2 000名學生中評為“閱讀之星”的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某工藝廠為迎“五一”,設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
(1)把上表中x、y的各組對應(yīng)值作為點的坐標,在下面的平面直角坐標系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=40°,則∠ACB的度數(shù)為 .
②若∠ACB=128°,則∠DCE的度數(shù)為 .
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.
(3)當∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】巴蜀中學的小明和朱老師一起到一條筆直的跑道上鍛煉身體,到達起點后小明做了一會準備活動,朱老師先跑.當小明出發(fā)時,朱老師已經(jīng)距起點200米了.他們距起點的距離s(米)與小明出發(fā)的時間t(秒)之間的關(guān)系如圖所示(不完整).據(jù)圖中給出的信息,解答下列問題:
(1)在上述變化過程中,自變量是______,因變量是______;
(2)朱老師的速度為_____米/秒,小明的速度為______米/秒;
(3)當小明第一次追上朱老師時,求小明距起點的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,⊙O過BC的中點D,且DE垂直AC于E.
(1)求證:AB=AC;
(2)求證:DE是⊙O的切線;
(3)若AB=13,BC=10,求DE的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校把一塊三角形的廢地開辟為動物園,如圖所示,測得AC=80m,BC=60m,AB=100m.
(1)若入口E在邊AB上,且與A、B等距離,求入口E到出口C的最短距離;
(2)若線段CD是一條小渠,且點D在邊AB上.點D距點A多遠時,水渠的距離最短?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com