已知⊙O的半徑為2,弦AB的長為,則弦AB所對的圓周角的度數(shù)為( )
A.30°
B.60°
C.30°或150°
D.60°或120°
【答案】分析:先根據(jù)題意畫出圖形,連接OA、OB,過O作OF⊥AB,由垂徑可求出AF的長,根據(jù)特殊角的三角函數(shù)值可求出∠AOF的度數(shù),由圓周角定理及圓內(nèi)接四邊形的性質(zhì)即可求出答案.
解答:解:如圖所示,
連接OA、OB,過O作OF⊥AB,則AF=AB,∠AOF=∠AOB,
∵OA=2,AB=2,
∴AF=AB=×2 =,
∴sin∠AOF===,
∴∠AOF=60°,
∴∠AOB=2∠AOF=120°,
∴∠ADB=∠AOB=×120°=60°,
∴∠AEB=180°-60°=120°.
故選D.
點評:本題考查的是圓周角定理及垂徑定理,解答此題時要注意一條弦所對的圓周角有兩個,這兩個角互為補角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、已知⊙O1的半徑為3,⊙O2的半徑為2,若⊙O1與⊙O2相切,則O1,O2的距離為
5或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的半徑為2,以⊙O的弦AB為直徑作⊙M,點C是⊙O優(yōu)弧
AB
上的一個動點(不與精英家教網(wǎng)點A、點B重合).連接AC、BC,分別與⊙M相交于點D、點E,連接DE.若AB=2
3

(1)求∠C的度數(shù);
(2)求DE的長;
(3)如果記tan∠ABC=y,
AD
DC
=x(0<x<3),那么在點C的運動過程中,試用含x的代數(shù)式表示y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O的半徑為4,A為線段PO的中點,當(dāng)OP=10時,點A與⊙O的位置關(guān)系為( 。
A、在圓上B、在圓外C、在圓內(nèi)D、不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知球的半徑為R=0.53,根據(jù)球的體積公式V=
43
πR3
,求球體的體積(π取3.14,保留兩個有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知圓的半徑為4cm,直線和圓相離,則圓心到直線的距離d的取值范圍是
d>4cm
d>4cm

查看答案和解析>>

同步練習(xí)冊答案