如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M(1,4),與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y精英家教網(wǎng)軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)求tan∠ACO與sin∠BCO的乘積;
(3)在線段BC邊上是否存在點(diǎn)P,使得以B、O、P為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)在對(duì)稱軸上是否存在一點(diǎn)P,使|PC-PB|的值最大,請(qǐng)求出點(diǎn)P的坐標(biāo).
分析:(1)根據(jù)二次函數(shù)頂點(diǎn)式可求函數(shù)解析式;
(2)先解方程-x2+2x+3=0,易求A、B點(diǎn)的坐標(biāo),從而易得OA=1,OC=3,OB=3,在Rt△BOC中,利用勾股定理可求BC,進(jìn)而可求tan∠ACO•sin∠BCO;
(3)分兩種情況討論:①當(dāng)△BPO∽△BAC時(shí),有BP:OB=BA:CB,易求BP,再過(guò)P作PG⊥x軸,交x軸于點(diǎn)G,由于PG∥OC,那么△BPG∽△BCO,利用比例線段可求PG,再利用勾股定理易求BG,從而可求OG,最后可得P點(diǎn)坐標(biāo);
②當(dāng)△BPO∽△BCA時(shí),同理可求P(
3
4
,
9
4
)
;
(4)存在,先利用對(duì)稱性可求C點(diǎn)的對(duì)稱點(diǎn)N,過(guò)BN作直線,交對(duì)稱軸于P,先求過(guò)B、N的直線,再把x=1代入函數(shù)解析式即可求y,從而可得P點(diǎn)坐標(biāo).
解答:精英家教網(wǎng)精英家教網(wǎng)解:根據(jù)題意可得
(1)y=-(x-1)2+4=-x2+2x+3;

(2)解方程-x2+2x+3=0得
x1=-1,x2=3,
∴A(-1,0),B(3,0),C(0,3),
∴OA=1,OC=3,OB=3,
∴BC=3
2

∴tan∠ACO•sin∠BCO=
1
3
×
3
3
2
=
2
6
;

(3)①當(dāng)△BPO∽△BAC時(shí),有
BP:OB=BA:CB,
∴BP=2
2
,
過(guò)點(diǎn)P作PG⊥x軸,交x軸于點(diǎn)G,
∵PG∥OC,
∴△BPG∽△BCO,
∴PG:OC=BP:BC,
∴PG=2,
在Rt△BPG中,BG=2,∴OG=1,
∴P點(diǎn)坐標(biāo)是(1,2),精英家教網(wǎng)
②當(dāng)△BPO∽△BCA時(shí),同理可求P(
3
4
,
9
4
)


(4)存在,理由是:
利用對(duì)稱性原理:求出C點(diǎn)的對(duì)稱點(diǎn)N(2,3),
過(guò)B、N作直線,交對(duì)稱軸于點(diǎn)P,
設(shè)直線BN的方程是y=ax+b,那么
3a+b=0
2a+b=3

解得y=-3x+9,
當(dāng)x=1時(shí),y=6,
故P點(diǎn)坐標(biāo)是(1,6).
點(diǎn)評(píng):本題考查了二次函數(shù)的有關(guān)知識(shí)、相似三角形的判定和性質(zhì)、平行線分線段成比例定理的推論、勾股定理、三角函數(shù)的計(jì)算、解方程組.解題的關(guān)鍵是要注意結(jié)合題意畫圖,并且知道二次函數(shù)具有對(duì)稱性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是拋物線拱橋,已知水位在AB位置時(shí),水面寬4
6
m
,水位上升3m,達(dá)到警戒線CD,這時(shí)水面寬4
3
m
.若洪水到來(lái)時(shí),水位以每小時(shí)0.25m的速度上升,求水過(guò)警戒線后幾小時(shí)淹到拱橋頂?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為
5
2
米,旗桿AB高為3米,C點(diǎn)的垂精英家教網(wǎng)直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為數(shù)學(xué)公式米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年青海省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過(guò),落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過(guò)的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案