【題目】郵遞員騎車從郵局出發(fā),先向南騎行2 km,到達(dá)A村,繼續(xù)向南騎行3 km到達(dá)B村,然后向北騎行9 km到達(dá)C村,最后回到郵局.

(1)以郵局為原點,以向北為正方向,用0.5 cm表示1 km,畫出數(shù)軸,并在該數(shù)軸上表示出A,BC三個村莊的位置.

(2)C村離A村有多遠(yuǎn)?

(3)郵遞員一共騎了多少千米?

【答案】(1)數(shù)軸表示見解析;(26千米;(318千米.

【解析】

1)以郵局為原點,以向北方向為正方向用1cm表示1km,按此畫出數(shù)軸即可;
2)可直接算出來,也可從數(shù)軸上找出這段距離;
3)郵遞員一共騎了多少千米?即數(shù)軸上這些點的絕對值之和.

1)依題意得,數(shù)軸為:

2)依題意得:C點與A點的距離為:2+4=6(千米);
3)依題意得郵遞員騎了:2+3+9+4=18(千米).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),梯形OABC的頂點坐標(biāo)分別是:A(3,4),B(8,4),C(11,0),點P(t,0)是線段OC上一點,設(shè)四邊形ABCP的面積為S.

(1)過點B作BEx軸于點E,則BE= ,用含t的代數(shù)式表示PC=

(2)求S與t的函數(shù)關(guān)系.

(3)當(dāng)S=20時,直接寫出線段AB與CP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b(a0)的圖象與反比例函數(shù)(k0)的圖象交于A(﹣3,2),B(2,n).

(1)求反比例函數(shù)的解析式;

(2)求一次函數(shù)y=ax+b的解析式;

(3)觀察圖象,直接寫出不等式ax+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填在表示它所在的集合里:

12,,,

1)正數(shù)集合:{ }; 2)負(fù)數(shù)集合:{ }

3)整數(shù)集合;{ } 4)分?jǐn)?shù)集合:{ }

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣2)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出圖中OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種水泥儲存罐的容量為25立方米,它有一個輸入口和一個輸出口.從某時刻開始,只打開輸入口,勻速向儲存罐內(nèi)注入水泥,3分鐘后,再打開輸出口,勻速向運輸車輸出水泥,又經(jīng)過2.5分鐘儲存罐注滿,關(guān)閉輸入口,保持原來的輸出速度繼續(xù)向運輸車輸出水泥,當(dāng)輸出的水泥總量達(dá)到8立方米時,關(guān)閉輸出口.儲存罐內(nèi)的水泥量y(立方米)與時間x(分)之間的部分函數(shù)圖象如圖所示.

(1)求每分鐘向儲存罐內(nèi)注入的水泥量.

(2)當(dāng)3≤x≤5.5時,求yx之間的函數(shù)關(guān)系式.

(3)儲存罐每分鐘向運輸車輸出的水泥量是   立方米,從打開輸入口到關(guān)閉輸出口共用的時間為   分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由一些大小相同的小正方體組成的簡單幾何體的主視圖和俯視圖如圖29-29所示.

(1)請你畫出這個幾何體的一種左視圖.

(2)若組成這個幾何體的小正方體的塊數(shù)為n,請你寫出n的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校進(jìn)行校園美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo),經(jīng)測算:甲隊單獨完成這項工程需要60天,如果由甲隊先做20天,剩下的工程由甲、乙合作24天完成.

1)乙隊單獨完成這項工程需要多少天?

2)甲隊施工一天,需要支付工程款3.5萬元,乙隊施工一天需要支付工程款2萬元:如果規(guī)定在70天內(nèi)完成這項工作,是由甲、乙兩隊單獨完成省錢?還是由甲乙合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓, AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=EAC.

(1)求證:AE是⊙O的切線;

(2)過點CCGAD,垂足為F,與AB交于點G,若AGAB=36,tanB=,求DF的值

查看答案和解析>>

同步練習(xí)冊答案