等腰△ABC中,AB=2BC,其周長為30,則AB長為________.

12
分析:由等腰△ABC中,AB=2BC,由三角形三邊關系可得AB=AC,又由其周長為30,即可求得AB的長.
解答:∵等腰△ABC中,AB=2BC,
若BC=AC,則BC+AC=2BC=AB,不能組成三角形,故BC≠AC,
∴AB=AC,
∵周長為30,
∴AB+AC+BC=5BC=30,
∴BC=6,
∴AB=12.
故答案為:12.
點評:此題考查了等腰三角形的性質與三角形三邊關系.此題難度不大,注意三角形等邊對等角的性質的應用,注意分類討論思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、等腰△ABC中,AB=AC,D為BC上的一動點,DE∥AC,DF∥AB,分別交AB于E,AC于F,則DE+DF是否隨D點變化而變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•豐南區(qū)一模)在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值=
3
4
3
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D點作DF⊥AC于F,有下列結論:
①DE=DC;②DF為⊙O的切線;③劣弧DB=劣弧DE;④AE=2EF
其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC,∠A=50°,邊AB的垂直平分線交邊AC于點E,則∠EBC=
15
15
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,O為AB上一點,以O為圓心,OB長為半徑的圓交BC于D,DE⊥AC交AC于點E.
(1)求證:DE是⊙O的切線;
(2)若⊙O與AC相切于點F,⊙O的半徑為2cm,AB=AC=6cm,求∠A的度數(shù).

查看答案和解析>>

同步練習冊答案