(1)如圖4225(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D,E.證明:DE=BD+CE;
(2)如圖4225(2),將(1)中的條件改為:在△ABC中,AB=AC,點(diǎn)D,A,E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?若成立,請你給出證明;若不成立,請說明理由;
(3) 拓展與應(yīng)用:如圖4225(3),點(diǎn)D,E是D,A,E三點(diǎn)所在直線m上的兩動點(diǎn)(D,A,E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
圖4225
證明:(1)∵BD⊥直線m,CE⊥直線m,
∴∠BDA=∠CEA=90°.
∵∠BAC=90°,∴∠BAD+∠CAE=90°.
∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.
又AB=AC,∴△ADB≌△CEA.
∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.
(2)成立.∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α.
∴∠DBA=∠CAE.
∵∠BDA=∠AEC=α,AB=AC,
∴△ADB≌△CEA.∴AE=BD,AD=CE.
∴DE=AE+AD=BD+CE.
(3)由(2)知,△ADB≌△CEA,
則BD=AE,∠DBA=∠EAC.
∵△ABF和△ACF均為等邊三角形,
∴∠ABF=∠CAF=60°.
∴∠DBA+∠ABF=∠EAC+∠CAF.
∴∠DBF=∠EAF.
∵BF=AF,BD=AE,∴△DBF≌△EAF.
∴DF=EF,∠BFD=∠AFE.
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.
∴△DEF為等邊三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖5211,CD是⊙O的直徑,弦AB⊥CD于點(diǎn)G,直線EF與⊙O相切于點(diǎn)D,則下列結(jié)論中不一定正確的是( )
A. AG=BG B. AB∥EF C. AD∥BC D. ∠ABC=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若反比例函數(shù)的圖象位于一、三象限內(nèi),正比例函數(shù)過二、四象限,則的整數(shù)值是________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖4220,已知∠B=∠C,添加一個(gè)條件使△ABD≌△ACE(不標(biāo)注新的字母,不添加新的線段),你添加的條件是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一元二次方程x2+x-2=0的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根
C.只有一個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
根據(jù)圖213中給出的信息,解答下列問題:
(1)放入一個(gè)小球水面升高_(dá)_____cm,放入一個(gè)大球水面升高_(dá)_____cm;
(2)如果要使水面上升到50 cm,應(yīng)放入大球、小球各多少個(gè)?
圖213
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖4340,在矩形ABCD中,點(diǎn)E是BC上一點(diǎn),AE=AD,DF⊥AE,垂足為F.
求證:DF=DC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com