(2013•新余模擬)如圖,在Rt△ABC中,∠C為直角,以AB上一點(diǎn)O為圓心,OA長(zhǎng)為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
(1)若AC=8,AB=12,求⊙O的半徑;
(2)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說(shuō)明理由.
分析:(1)設(shè)圓O的半徑為r,連接OD,由BC為圓O的切線,根據(jù)切線的性質(zhì)得到OD垂直于BC,由AC垂直于BC,得到一對(duì)直角相等,再由公共角相等,利用兩對(duì)對(duì)應(yīng)角相等的三角形相似,可得出三角形OBD與三角形ABC相似,由相似得比例,將AC,AB,OD及OB代入,得到關(guān)于r的方程,求出方程的解即可求出圓O的半徑;
(2)四邊形BDEF為菱形,理由為:由平行四邊形的對(duì)角相等可得出∠B=∠DEF,再由同弧所對(duì)的圓心角等于所對(duì)圓周角的2倍得到∠DOB為∠DEF的2倍,等量代換可得出∠DOB為∠B的2倍,由三角形OBD為直角三角形,利用三角形的內(nèi)角和定理得到∠DOB為60°,再由平行四邊形的對(duì)邊平行得到DE與AB平行,根據(jù)兩直線平行內(nèi)錯(cuò)角相等可得出∠EDO為60°,再由OE=OD,可得出三角形OED為等邊三角形,根據(jù)等邊三角形的三邊相等可得出ED=EO=OF,根據(jù)一組對(duì)邊平行且相等的四邊形為平行四邊形得到OFDE為平行四邊形,由OE=OF,利用鄰邊相等的平行四邊形為菱形可得出四邊形OFDE為菱形.
解答:解:(1)設(shè)⊙O的半徑為r,連接OD,

∵BC切⊙O于點(diǎn)D,
∴OD⊥BC,即∠ODB=90°,
∵∠C=90°,
∴∠C=∠ODB,
∵∠B=∠B,
∴△OBD∽△ABC,…(2分)
又∵AC=8,AB=12,
OD
AC
=
OB
AB
,即
r
8
=
12-r
12

解得:r=
24
5
,
∴⊙O的半徑為
24
5
;…(4分)

(2)四邊形OFDE是菱形,理由為:…(5分)
∵四邊形BDEF是平行四邊形,
∴∠DEF=∠B,
∵∠DEF=
1
2
∠DOB,
∴∠B=
1
2
∠DOB,
∵∠ODB=90°,
∴∠DOB+∠B=90°,
∴∠DOB=60°,
∵DE∥AB,
∴∠ODE=60°,
∵OD=OE,
∴△ODE是等邊三角形,
∴OD=DE,
∵OD=OF,
∴DE=OF,又DE∥OF,
∴四邊形OFDE是平行四邊形,…(7分)
∵OE=OF,
∴平行四邊形OFDE是菱形.…(8分)
點(diǎn)評(píng):此題考查了切線的性質(zhì),平行四邊形的判定,菱形的判定,等邊三角形的判定與性質(zhì),圓周角定理,以及相似三角形的判定與性質(zhì),熟練掌握性質(zhì)及判定是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新余模擬)如圖,直徑AB為12的半圓,繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,此時(shí)點(diǎn)B到了點(diǎn)B′,則圖中陰影部分的面積是
18π
18π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新余模擬)如圖,共有12個(gè)大小相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開(kāi)圖的一部分,現(xiàn)從其余的小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開(kāi)圖的概率是
4
7
4
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新余模擬)如圖,已知AB∥CD,∠A=50°,∠C=∠E.則∠C=
25゜
25゜

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新余模擬)若不等式x-3(x-2)≤a的解為x≥-1,則a的值為
8
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新余模擬)如圖,△ABC是一個(gè)直角三角形,其中∠C=90゜,∠A=30°,BC=6;O為AB上一點(diǎn),且OB=3,⊙O是一個(gè)以O(shè)為圓心、OB為半徑的圓;現(xiàn)有另一半徑為3
3
-3
的⊙D以每秒為1的速度沿B→A→C→B運(yùn)動(dòng),設(shè)時(shí)間為t,當(dāng)⊙D與⊙O外切時(shí),t的值為
3
3
+3或12+3
3
或12+6
3
3
3
+3或12+3
3
或12+6
3

查看答案和解析>>

同步練習(xí)冊(cè)答案