問題探究:
(1)請(qǐng)你在圖①中做一條直線,使它將矩形ABCD分成面積相等的兩部分;
(2)如圖②點(diǎn)M是矩形ABCD內(nèi)一點(diǎn),請(qǐng)你在圖②中過點(diǎn)M作一條直線,使它將矩形ABCD分成面積相等的兩部分.
問題解決:
(3)如圖③,在平面直角坐標(biāo)系中,直角梯形OBCD是某市將要籌建的高新技術(shù)開發(fā)區(qū)用地示意圖,其中DC∥OB,OB=6,CD=BC=4開發(fā)區(qū)綜合服務(wù)管理委員會(huì)(其占地面積不計(jì))設(shè)在點(diǎn)P(4,2)處.為了方便駐區(qū)單位準(zhǔn)備過點(diǎn)P修一條筆直的道路(路寬不計(jì)),并且是這條路所在的直線l將直角梯形OBCD分成面積相等的兩部分,你認(rèn)為直線l是否存在?若存在,求出直線l的表達(dá)式;若不存在,請(qǐng)說明理由.
精英家教網(wǎng)
分析:(1)矩形的對(duì)角線把矩形分成面積相等的兩部分.
(2)連接AC,BD中心點(diǎn)位P,過P點(diǎn)的直線分矩形為相等的兩部分.
(3)假如存在,過點(diǎn)D的直線只要作DA⊥OB與點(diǎn)A,求出P點(diǎn)的坐標(biāo),設(shè)直線PH的表達(dá)式為y=kx+b,解出點(diǎn)H的坐標(biāo),求出斜率k和b.若k和b存在,直線就存在.
解答:精英家教網(wǎng)解:(1)如圖①.

(2)如圖②連接AC、BD交于P則P為矩形對(duì)稱中心.作直線MP,直線MP即為所求.

(3)如圖③存在直線l,
過點(diǎn)D作DA⊥OB于點(diǎn)A,
則點(diǎn)P(4,2)為矩形ABCD的對(duì)稱中心,
∴過點(diǎn)P的直線只要平分△DOA的面積即可,
易知,在OD邊上必存在點(diǎn)H使得PH將△DOA面積平分.
從而,直線PH平分梯形OBCD的面積,
即直線PH為所求直線l
設(shè)直線PH的表達(dá)式為y=kx+b且點(diǎn)P(4,2),
∴2=4k+b即b=2-4k,
∴y=kx+2-4k,
∵直線OD的表達(dá)式為y=2x,
y=kx+2-4k
y=2x

解得
x=
2-4k
2-k
y=
4-8k
2-k

∴點(diǎn)H的坐標(biāo)為(x=
2-4k
2-k
,y=
4-8k
2-k

把x=2代入直線PH的解析式y(tǒng)=kx+2-4k,得y=2-2k,
∴PH與線段AD的交點(diǎn)F(2,2-2k),
∴0<2-2k<4,
∴-1<k<1.
∴S△DHF=
1
2
(4-2+2k)•(2-
2-4k
2-k
)=
1
2
×
1
2
×2×4,
∴解得k=
13
-3
2
(k=
-
13
-3
2
舍去).
∴b=8-2
13
,
∴直線l的表達(dá)式為y=
13
-3
2
x+8-2
13
點(diǎn)評(píng):本題主要考查矩形的性質(zhì),前兩問還是比較容易,但是最后一問比較麻煩,容易出錯(cuò),做的時(shí)候要認(rèn)真.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年湖南省長(zhǎng)沙市南雅中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

問題探究:
(1)請(qǐng)你在圖①中做一條直線,使它將矩形ABCD分成面積相等的兩部分;
(2)如圖②點(diǎn)M是矩形ABCD內(nèi)一點(diǎn),請(qǐng)你在圖②中過點(diǎn)M作一條直線,使它將矩形ABCD分成面積相等的兩部分.
問題解決:
(3)如圖③,在平面直角坐標(biāo)系中,直角梯形OBCD是某市將要籌建的高新技術(shù)開發(fā)區(qū)用地示意圖,其中DC∥OB,OB=6,CD=BC=4開發(fā)區(qū)綜合服務(wù)管理委員會(huì)(其占地面積不計(jì))設(shè)在點(diǎn)P(4,2)處.為了方便駐區(qū)單位準(zhǔn)備過點(diǎn)P修一條筆直的道路(路寬不計(jì)),并且是這條路所在的直線l將直角梯形OBCD分成面積相等的兩部分,你認(rèn)為直線l是否存在?若存在,求出直線l的表達(dá)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(11)(解析版) 題型:解答題

(2010•陜西)問題探究:
(1)請(qǐng)你在圖①中做一條直線,使它將矩形ABCD分成面積相等的兩部分;
(2)如圖②點(diǎn)M是矩形ABCD內(nèi)一點(diǎn),請(qǐng)你在圖②中過點(diǎn)M作一條直線,使它將矩形ABCD分成面積相等的兩部分.
問題解決:
(3)如圖③,在平面直角坐標(biāo)系中,直角梯形OBCD是某市將要籌建的高新技術(shù)開發(fā)區(qū)用地示意圖,其中DC∥OB,OB=6,CD=BC=4開發(fā)區(qū)綜合服務(wù)管理委員會(huì)(其占地面積不計(jì))設(shè)在點(diǎn)P(4,2)處.為了方便駐區(qū)單位準(zhǔn)備過點(diǎn)P修一條筆直的道路(路寬不計(jì)),并且是這條路所在的直線l將直角梯形OBCD分成面積相等的兩部分,你認(rèn)為直線l是否存在?若存在,求出直線l的表達(dá)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•陜西)問題探究:
(1)請(qǐng)你在圖①中做一條直線,使它將矩形ABCD分成面積相等的兩部分;
(2)如圖②點(diǎn)M是矩形ABCD內(nèi)一點(diǎn),請(qǐng)你在圖②中過點(diǎn)M作一條直線,使它將矩形ABCD分成面積相等的兩部分.
問題解決:
(3)如圖③,在平面直角坐標(biāo)系中,直角梯形OBCD是某市將要籌建的高新技術(shù)開發(fā)區(qū)用地示意圖,其中DC∥OB,OB=6,CD=BC=4開發(fā)區(qū)綜合服務(wù)管理委員會(huì)(其占地面積不計(jì))設(shè)在點(diǎn)P(4,2)處.為了方便駐區(qū)單位準(zhǔn)備過點(diǎn)P修一條筆直的道路(路寬不計(jì)),并且是這條路所在的直線l將直角梯形OBCD分成面積相等的兩部分,你認(rèn)為直線l是否存在?若存在,求出直線l的表達(dá)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年陜西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•陜西)問題探究:
(1)請(qǐng)你在圖①中做一條直線,使它將矩形ABCD分成面積相等的兩部分;
(2)如圖②點(diǎn)M是矩形ABCD內(nèi)一點(diǎn),請(qǐng)你在圖②中過點(diǎn)M作一條直線,使它將矩形ABCD分成面積相等的兩部分.
問題解決:
(3)如圖③,在平面直角坐標(biāo)系中,直角梯形OBCD是某市將要籌建的高新技術(shù)開發(fā)區(qū)用地示意圖,其中DC∥OB,OB=6,CD=BC=4開發(fā)區(qū)綜合服務(wù)管理委員會(huì)(其占地面積不計(jì))設(shè)在點(diǎn)P(4,2)處.為了方便駐區(qū)單位準(zhǔn)備過點(diǎn)P修一條筆直的道路(路寬不計(jì)),并且是這條路所在的直線l將直角梯形OBCD分成面積相等的兩部分,你認(rèn)為直線l是否存在?若存在,求出直線l的表達(dá)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案