如圖,OA,OB是⊙O的兩條半徑,點(diǎn)C是圓上一點(diǎn),若∠ACB=32°,則∠AOB的度數(shù)為
64°
64°
分析:利用同弧所對(duì)的圓心角等于所對(duì)圓周角的2倍,即可求出所求角的度數(shù).
解答:解:∵∠AOB與∠ACB都對(duì)
AB
,∠ACB=32°,
∴∠AOB=2∠ACB=64°.
故答案為:64°.
點(diǎn)評(píng):此題考查了圓周角定理,熟練掌握?qǐng)A周角定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長(zhǎng)線交⊙O于點(diǎn)Q,過(guò)點(diǎn)Q的直線交OA延長(zhǎng)線于點(diǎn)R,且RP=RQ
(1)求證:直線QR是⊙O的切線;
(2)若OP=PA=1,試求RQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,OA、OB是兩條互相垂直的半徑,且OA=4,C為OB的中點(diǎn),以O(shè)B為直徑作半圓,CP∥OA,交
AB
于點(diǎn)P,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,OA和OB是⊙O的半徑,并且OA⊥OB.P是OA上的任意一點(diǎn),BP的延長(zhǎng)線交⊙O于點(diǎn)Q,點(diǎn)R在OA的延長(zhǎng)線上,且RP=RQ.
(1)求證:RQ是⊙O的切線;
(2)求證:OB2=PB•PQ+OP2;
(3)當(dāng)RA≤OA時(shí),試確定∠B的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,OA和OB是⊙O的半徑,OB=2,OA⊥OB,P是OA上任一點(diǎn),BP的延長(zhǎng)線交⊙O于點(diǎn)Q,過(guò)點(diǎn)Q的⊙O的切線交OA延長(zhǎng)線于點(diǎn)R.
(Ⅰ)求證:RP=RQ;
(Ⅱ)若OP=PQ,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長(zhǎng)線交⊙O于點(diǎn)Q,過(guò)點(diǎn)Q的直線交OA延長(zhǎng)線于點(diǎn)R,且RP=RQ
求證:直線QR是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案