如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-1,3)、(-4,1),先

將線段AB沿一確定方向平移得到線段A1B1,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A1,點(diǎn)B1的坐標(biāo)為(0,2),在將線段A1B1

繞遠(yuǎn)點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A2B2,點(diǎn)A1的對(duì)應(yīng)點(diǎn)為點(diǎn)A2

(1)畫出線段A1B1、A2B2;

(2)直接寫出在這兩次變換過程中,點(diǎn)A經(jīng)過A1到達(dá)A2的路徑長(zhǎng).

 

【答案】

解:(1)畫出線段A1B1、A2B2如圖:

(2)在這兩次變換過程中,點(diǎn)A經(jīng)過A1到達(dá)A2的路徑長(zhǎng)為。

【解析】網(wǎng)格問題,圖形的平移和旋轉(zhuǎn)變換,勾股定理,扇形弧長(zhǎng)公式。

(1)根據(jù)圖形的平移和旋轉(zhuǎn)變換性質(zhì)作出圖形。

        (2)如圖,點(diǎn)A到點(diǎn)A1的平移變換中,

 

 

,

 點(diǎn)A2到點(diǎn)A3的平移變換中,

 ∵,

。

∴在這兩次變換過程中,點(diǎn)A經(jīng)過A1到達(dá)A2的路徑長(zhǎng)為。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案