如圖,△DAC和△EBC均是等邊三角形,AE、BD分別與CD、CE交于點M、N,有如下結論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,結論正確的有
①②
①②
.(將正確答案的序號填在橫線上)
分析:根據(jù)等邊三角形性質得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根據(jù)SAS證△ACE≌△DCB,推出∠NDC=∠CAM,求出∠DCE=∠ACD,證△ACM≌△DCN,推出CM=CN,AM=DN,即可判斷各個結論.
解答:解:①∵△DAC和△EBC均是等邊三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠BCD,
在△ACE和△BCD中,
AC=CD
∠ACE=∠BCD
BC=CE

∴△ACE≌△DCB(SAS);
故①正確;

②∵∠ACD=∠BCE=60°,
∴∠DCE=180°-60°-60°=60°=∠ACD,
∵△ACE≌△DCB,
∴∠NDC=∠CAM,
在△ACM和△DCN中,
 ∠CAM=∠CDN  
AC=CD
∠ACM=∠DCN
,
∴△ACM≌△DCN(ASA),
∴CM=CN,AM=DN;
故②正確;

③∵△ADC是等邊三角形,
∴AC=AD,
∠ADC=∠ACD,
∵∠AMC>∠ADC,
∴∠AMC>∠ACD,
∴AC>AM,
即AC>DN;
故③錯誤;
故答案是:①②.
點評:本題考查了等邊三角形的性質和全等三角形的性質和判定的應用,主要考查學生的推理能力和辨析能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、如圖,△DAC和△EBC均是等邊三角形,AE、BD分別與CD、CE交于點M、N,有如下結論:①△ACE≌△DCB;②CM=CN;③AC=DN;④∠DAE=∠DBC.其中正確的有
①②④
(填番號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如圖,△DAC和△EBC都是等邊三角形,AE,BD分別與CD,CE交于點M,N.
(1)證明:△ACE≌△DCB.
(2)在兩組線段:①CM與CN;②AC與DN中,有相等的線段嗎?
(只須寫出結論,不須證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、如圖,△DAC和△EBC均是等邊三角形,AE、BD分別與CD、CE交于點M、N,有如下結論:①△ACE≌△DCB; ②CM=CN;③AC=DN.其中,正確結論的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△DAC和△EBC均為等邊三角形,AE,BD交于O點,且分別與CD,CE交于M,N.則下列結論:①AE=BD;②CM=CN;③∠AOB=120°;④CO平分∠AOB.其中正確的有( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案