已知直線y=kx(k>0)與雙曲線y=交于點(diǎn)A(x1,y1),B(x2,y2)兩點(diǎn),則x1y2+x2y1的值為

[  ]

A.-6

B.-9

C.0

D.9

答案:A
解析:

  分析:先根據(jù)點(diǎn)A(x1,y1),B(x2,y2)是雙曲線y=上的點(diǎn)可得出x1·y1=x2·y2=3,再根據(jù)直線y=kx(k>0)與雙曲線y=交于點(diǎn)A(x1,y1),B(x2,y2)兩點(diǎn)可得出x1=-x2,y1=-y2,再把此關(guān)系代入所求代數(shù)式進(jìn)行計(jì)算即可.

  解答:解:∵點(diǎn)A(x1,y1),B(x2,y2)是雙曲線y=上的點(diǎn)

  ∴x1·y1=x2·y2=3①,

  ∵直線y=kx(k>0)與雙曲線y=交于點(diǎn)A(x1,y1),B(x2,y2)兩點(diǎn),

  ∴x1=-x2,y1=-y2②,

  ∴原式=-x1y1-x2y2=-3-3=-6.

  故選A.

  點(diǎn)評(píng):本題考查的是反比例函數(shù)的對(duì)稱性,根據(jù)反比例函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱得出x1=-x2,y1=-y2是解答此題的關(guān)鍵.


提示:

考點(diǎn):反比例函數(shù)圖象的對(duì)稱性.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=kx+b經(jīng)過點(diǎn)(1,-1)和(2,-4).

(1)求直線的解析式;(2)求直線與x軸和y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,動(dòng)點(diǎn)P在x軸上以每秒1個(gè)長(zhǎng)度單位的速度由拋物線與x軸的另一個(gè)交點(diǎn)B向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動(dòng)且速度是點(diǎn)P運(yùn)動(dòng)速度的2倍。

1.(1)求此拋物線的解析式和直線的解析式;                 

2.(2)如果點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(秒),試問當(dāng)t為何值時(shí),△PQA是直角三角形;

3.(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大,若存在,求出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,動(dòng)點(diǎn)P在x軸上以每秒1個(gè)長(zhǎng)度單位的速度由拋物線與x軸的另一個(gè)交點(diǎn)B向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動(dòng)且速度是點(diǎn)P運(yùn)動(dòng)速度的2倍。
【小題1】(1)求此拋物線的解析式和直線的解析式;   
【小題2】(2)如果點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(秒),試問當(dāng)t為何值時(shí),△PQA是直角三角形;
【小題3】(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大,若存在,求出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京市工大附中第一中學(xué)九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,動(dòng)點(diǎn)P在x軸上以每秒1個(gè)長(zhǎng)度單位的速度由拋物線與x軸的另一個(gè)交點(diǎn)B向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動(dòng)且速度是點(diǎn)P運(yùn)動(dòng)速度的2倍。
【小題1】(1)求此拋物線的解析式和直線的解析式;   
【小題2】(2)如果點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(秒),試問當(dāng)t為何值時(shí),△PQA是直角三角形;
【小題3】(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大,若存在,求出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

 已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,動(dòng)點(diǎn)P在x軸上以每秒1個(gè)長(zhǎng)度單位的速度由拋物線與x軸的另一個(gè)交點(diǎn)B向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動(dòng)且速度是點(diǎn)P運(yùn)動(dòng)速度的2倍。

1.(1)求此拋物線的解析式和直線的解析式;                 

2.(2)如果點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(秒),試問當(dāng)t為何值時(shí),△PQA是直角三角形;

3.(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大,若存在,求出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案