【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(4,0)、(0,4),P是△AOB外接圓上的一點(diǎn),且∠AOP=45°,則點(diǎn)P的縱坐標(biāo)為(  )

A. +1 B. -1 C. 2+3 D. 2+2

【答案】D

【解析】

P點(diǎn)在第一象限,∠AOP=45°,可設(shè)P(a,a).過點(diǎn)CCF∥OA,過點(diǎn)PPE⊥OAECFF,用含a的代數(shù)式分別表示PF,CF,在△CFP中由勾股定理求出a的值,即可求得P點(diǎn)的坐標(biāo).

解:∵OB=4,OA=4

AB =8,

∵∠AOP=45°,

P點(diǎn)橫縱坐標(biāo)相等,可設(shè)Pa,a).

∵∠AOB=90°,

AB是直徑,

∴Rt△AOB外接圓的圓心為AB中點(diǎn),設(shè)為點(diǎn)C,則C(2,2),

P點(diǎn)在圓上,P點(diǎn)到圓心的距離為圓的半徑4.

過點(diǎn)CCFOA,過點(diǎn)PPEOAECFF,

∴∠CFP=90°,

PFa﹣2,CFa﹣2,PC=4,

(a2)2+(a﹣2)2=42,舍去不合適的根,

可得a=2+2P2+2,2+2);

P點(diǎn)坐標(biāo)為(2+2,2+2).

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+3x+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的解析式;

(2)若點(diǎn)P在第一象限的拋物線上,且點(diǎn)P的橫坐標(biāo)為t,過點(diǎn)P向x軸作垂線交直線BC于點(diǎn)Q,設(shè)線段PQ的長為m,求m與t之間的函數(shù)關(guān)系式,并求出m的最大值;

(3)在x軸上是否存在點(diǎn)E,使以點(diǎn)B,C,E為頂點(diǎn)的三角形為等腰三角形?如果存在,直接寫出E點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為1的正方形,E,F(xiàn)BD所在直線上的兩點(diǎn).若AE= ,EAF=135°,則以下結(jié)論正確的是(

A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國西南五省市的部分地區(qū)發(fā)生嚴(yán)重旱災(zāi),為鼓勵節(jié)約用水某市自來水公司采取分段收費(fèi)標(biāo)準(zhǔn),右圖反映的是每月收取水費(fèi)y與用水量x之間的函數(shù)關(guān)系

1)小明家五月份用水8,應(yīng)交水費(fèi)______ ;

2)按上述分段收費(fèi)標(biāo)準(zhǔn),小明家三、四月份分別交水費(fèi)26元和18,問四月份比三月份節(jié)約用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實(shí)黨的精準(zhǔn)扶貧政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20/噸和25/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15/噸和24/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

(1)A城和B城各有多少噸肥料?

(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).

(3)由于更換車型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,都是等邊三角形,下列結(jié)論:①;②平分;③;④;其中正確的有( )個

A.2B.3C.4D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列判斷不正確的是( 。

A. ac<0 B. a﹣b+c>0 C. b=﹣4a D. a+b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+3與兩坐標(biāo)軸交于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過A、B兩點(diǎn),且交x軸的正半軸于點(diǎn)C.

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)求拋物線的解析式和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,任意兩點(diǎn)A),B, ),規(guī)定運(yùn)算:AB=, );AB=;當(dāng)時,A=B,有下列四個命題:(1)若A1,2),B2﹣1),則AB=31),AB=0

2)若A⊕B=B⊕C,則A=C;

3)若AB=BC,則A=C

4)對任意點(diǎn)A、B、C,均有(A⊕B⊕C=A⊕B⊕C)成立,其中正確命題的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案