【題目】如圖所示,某公司有三個住宅區(qū)可看作一點(diǎn),A,B,C各區(qū)分別住有職工30人、15人、10人,且這三個住宅區(qū)在一條大道上(A,B,C三點(diǎn)共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個?奎c(diǎn),為使所有的人步行到?奎c(diǎn)的路程之和最小,那么該停靠點(diǎn)的位置應(yīng)設(shè)在( )
A. 點(diǎn)A B. 點(diǎn)B
C. A,B之間 D. B,C之間
【答案】A
【解析】以點(diǎn)A為?奎c(diǎn),則所有人的路程的和=15×100+10×300=4500米;以點(diǎn)B為?奎c(diǎn),則所有人的路程的和=30×100+10×200=5000米;當(dāng)在AB之間?繒r,設(shè)?奎c(diǎn)到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100-m)+10(300-m)=4500+5m>4500;當(dāng)在BC之間?繒r,設(shè)?奎c(diǎn)到B的距離是a,則(0<a<200),則所有人的路程的和是:15a+30(100+a)+10(200-a)=5000+35a>5000.所以該?奎c(diǎn)的位置應(yīng)設(shè)在點(diǎn)A,故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車、一輛貨車和一輛小轎車在一條筆直的公路上朝同一方向勻速行駛,在某一時刻,客車在前,小轎車在后,貨車在客車與小轎車的正中間,過了12分鐘,小轎車追上了貨車,又過了8分鐘,小轎車追上了客車,再過t分鐘,貨車追上了客車,則t=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點(diǎn)A,O,B分別表示﹣15,0,9,點(diǎn)P,Q分別從點(diǎn)A,B同時開始沿數(shù)軸正方向運(yùn)動,點(diǎn)P的速度是每秒3個單位,點(diǎn)Q的速度是每秒1個單位,運(yùn)動時間為t秒.在運(yùn)動過程中,若點(diǎn)P,Q,O三點(diǎn)其中一個點(diǎn)恰好是另外兩點(diǎn)為端點(diǎn)的線段的一個三等分點(diǎn),則運(yùn)動時間為_____秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB是某天然氣公司的主輸氣管道,點(diǎn)C、D是在AB異側(cè)的兩個小區(qū),現(xiàn)在主輸氣管道上尋找支管道連接點(diǎn),向兩個小區(qū)鋪設(shè)管道。有以下兩個方案:
方案一:只取一個連接點(diǎn)P,使得像兩個小區(qū)鋪設(shè)的支管道總長度最短,在圖中標(biāo)出點(diǎn)P的位置,保留畫圖痕跡;
方案二:取兩個連接點(diǎn)M和N,使得點(diǎn)M到C小區(qū)鋪設(shè)的支管道最短,使得點(diǎn)N到D小區(qū)鋪設(shè)的管道最短. 在途中標(biāo)出M、N的位置,保留畫圖痕跡;
設(shè)方案一中鋪設(shè)的支管道總長度為L1,方案二中鋪設(shè)的支管道總長度為L2,則L1與L2的大小關(guān)系為:L1_______L2(填“>”、“<”或“=”)理由是____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知射線CB∥OA,∠C=∠OAB,
(1)求證:AB∥OC;
(2)如圖2,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
①當(dāng)∠C=110°時,求∠EOB的度數(shù).
②若平行移動AB,那么∠OBC :∠OFC的值是否隨之發(fā)生變化?若變化,找出變
化規(guī)律;若不變,求出這個比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動,若點(diǎn)A以每秒1個單位長度的速度向左運(yùn)動,同時,點(diǎn)B和點(diǎn)C分別以每秒2個單位長度和4個單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(-1,0),半徑為1,點(diǎn)P為直線 上的動點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長PQ的最小值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,過原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC,連結(jié)OB,D為OB的中點(diǎn)。點(diǎn)E是線段AB上的動點(diǎn),連結(jié)DE,作DF⊥DE,交OA于點(diǎn)F,連結(jié)EF。已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒。
(1)如圖1,當(dāng)t=3時,求DF的長;
(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值;
(3)連結(jié)AD,當(dāng)AD將△DEF分成的兩部分面積之比為1:2時,求相應(yīng)t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,完成下列推理,并填寫理由,如圖,∠B=∠D,∠1=∠2,求證:AB∥CD.
【證明】∵∠1=∠2(已知),
∴∥()
∴∠DAB+∠=180°()
∵∠B=∠D(已知)
∴∠DAB+∠=180°()
∴AB∥CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com